A Tour of DNA Tile Self-Assembly

Andrew Winslow

Department of Computer Science, UTRGV

A Tour of DNA Tile Self-Assembly

Andrew Winslow

Department of Computer Science, UTRGV

Crystallization

Morphogenesis

Natural self-assembly

Synthetic DNA self-assembly

DNA

GAAGTTTGGCGTTAGAACGTTGAAATCCGCCTTGTTAAGACCCCGTCTAAGCA

Single strand

DNA tile self-assembly

X00

Seed tile

[Winfree 1998]

DNA Sierpinski triangles [Papadakis, Rothemund, Winfree 2004]:

scale bars = 100 nm

 $\Theta(N)$

 $\Theta(\log(N))$

DNA binary counters [Evans, 2014]

DNA tile self-assembly:

Tile self-assembly:

DNA tile self-assembly:

Tile self-assembly:

aTAM is "capable"

What is a "capable" model of self-assembly?

Algorithmic behavior

Efficient NxN Usable Algorithmic behavior demonstrated by Universal computation

Efficient NxN Usable Algorithmic demonstrated by behavior demonstrated by Computation

Efficient = few tile types (program size, time)

Algorithmic demonstrated by Universal behavior

Usable algorithmic behavior

demonstrated by

few tile types Efficient NxN square assembly

Usable algorithmic behavior

demonstrated by

few tile types Efficient NxN square assembly

Universal computation (via blocked CA simulation)

Universal computation (via blocked CA simulation) [Winfree 1998]

"write 1, move left, change to s₁"

"write 1, move right, change to s₁"

$$\bullet \bullet \bullet 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad \bullet \bullet \bullet$$

"write 1, move left, change to s_1 "

$$\bullet \bullet \bullet \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \bullet \bullet \bullet$$

$$\bullet \bullet \bullet 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad \bullet \bullet \bullet$$

"write 0, move right, change to s₀"

$$\bullet \bullet \bullet \boxed{1} 1 1 1 1 1 0 1 \bullet \bullet \bullet$$

"write 1, move right, change to s1"

$$\bullet \bullet \bullet 1 1 0 1 1 0 1 \bullet \bullet \bullet$$

"write 1, move left, change to s_1 "

$$\bullet \bullet \bullet \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \bullet \bullet \bullet$$

"write 1, move left, change to s₁"

"write 1, move right, change to s₁"

"write 0, move right, change to s₀"

"write 0, move right, change to s₀"

[Rothemund, Winfree 2000]

The benchmarks of a capable self-assembly model

Usable algorithmic behavior

demonstrated by

few tile types Efficient NxN square assembly

The benchmarks of a capable self-assembly model

Usable algorithmic

demonstrated by

few tile types Efficient NxN square assembly

The benchmarks of a capable self-assembly model

Universal computation

Temperature 2

NxN square assembly w/O(log(N)) tile types

The benchmarks of a capable self-assembly model

Universal computation

Temperature 2

NxN square assembly w/O(log(N)) tile types

Temperature 2 can do *cooperative bonding*.

Computation uses cooperative bonding:

Is this required?

Efficient square assembly uses cooperative bonding:

Is this required?

Is the aTAM at temperature 1 computationally universal?

Is the aTAM at temperature 1 computationally universal?

Open since 2000, conjecture: no.

Is the aTAM at temperature 1 computationally universal?

Open since 2000, conjecture: no.

"weak cooperation"

Can an augmented temperature-1 aTAM be computationally universal?

Is the aTAM at temperature 1 computationally universal? Open since 2000, conjecture: no.

"weak cooperation" Can an augmented temperature-1 aTAM be computationally universal?

Yes, several ways.

Reading a bit w/o cooperation

Planarity is the barrier to reading without cooperative bonding.

Can read, but might get trapped.

Planarity is the barrier to reading without cooperative bonding.

Can read, but might get trapped.

Approach 1:3D [Cook, Fu, Schweller 2012]

Approach 1:3D [Cook, Fu, Schweller 2012]

Approach 1:3D [Cook, Fu, Schweller 2012]

[Patitz, Schweller, Summers 2011]

[Patitz, Schweller, Summers 2011]

[Patitz, Schweller, Summers 2011]

[Patitz, Schweller, Summers 2011]

Approach 2: Negative Glue [Patitz, Schweller, Summers 2011]

[Patitz, Schweller, Summers 2011]

Approach 3: Signal Tiles [Padilla et al. 2014], [Jonoska, Karpenko 2014]

Producible assemblies:

Terminal assemblies:

Producible assemblies:

Terminal assemblies:

Producible assemblies:

Terminal assemblies:

Is a seed necessary for some results?

no spurious nucleation

universal computation? efficient shape construction?

Is a seed necessary for some results? No!

no spurious nucleation

universal computation? efficient shape construction?

Every aTAM system can be *simulated* by a 2HAM system.

Every aTAM system can be *simulated* by a 2HAM system.

aTAM

Temperature 2

2HAM

aTAM

2HAM

2HAM

aTAM

Every aTAM system can be *simulated* by a 2HAM system. [Cannon et al. 2013]

aTAM

2HAM

Ь

d

Þ

Þ

Þ.

Intrinsic universality

In cellular automata:

Intrinsic universality

In cellular automata:

Temperature-1 universal computation is open. (and very hard)

Temperature-1 universal computation is open. (and very hard)

Easier goal: disprove stronger positive temp-1 claim.

Temperature-1 universal computation is open. (and very hard)

Easier goal: disprove stronger positive temp-1 claim.

Claim: some temp-1 system can simulate every temp-2 system.

Temperature-1 universal computation is open. (and very hard)

Easier goal: disprove stronger positive temp-1 claim.

Claim: some temp-1 system can simulate every temp-2 system.

Claim: temp-1 is intrinsically universal for temp-2.

Temperature 1Temperature 2

Temperature 1

Temperature 1

Temperature 1

Is intrinsic universality too much to ask?
No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

There exists a temp-2 system that simulates every system.

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

There exists a temp-2 system that simulates every system.

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

There exists a temp-2 system that simulates every system.

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

There exists a temp-2 system that simulates every system.

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

There exists a temp-2 system that simulates every system.

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

There exists a temp-2 system that simulates every system.

Temperature 2

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

There exists a temp-2 system that simulates every system.

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

There exists a temp-2 system that simulates every system.

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

No: temp-2 is intrinsically universal for all temps. [Doty et al. 2012]

Claim: temp-1 is *intrinsically universal* for temp-2.

Claim: temp-1 is *intrinsically universal* for temp-2.

There is a temp-2 system not simulated by any temp-1 system.

[Meunier et al. 2014]

for all a, b, $c \ge 0$

Assembled by temperature-1 "simulation":

for all a, b, $c \ge 0$

Assembled by temperature-1 "simulation":

Shapes assembled by at temperature 2:

for all a, b, $c \ge 0$

Fruits of intrinsic universality

The tile assembly model is intrinsically universal

David Doty^{*} Jack H. Lutz[†] Matthew J. Patitz[‡] Robert T. Schweller[§] Scott M. Summers[¶] Damien Woods^{||}

Intrinsic universality in tile self-assembly requires cooperation

Pierre-Etienne Meunier^{*} Matthew J. Patitz[†] Scott M. Summers[‡] Guillaume Theyssier[§] Andrew Winslow[¶] Damien Woods[∥]

The two-handed tile assembly model is not intrinsically universal

Erik D. Demaine^{*} Matthew J. Patitz[†] Trent A. Rogers[‡] Robert T. Schweller[§] Scott M. Summers[¶] Damien Woods[∥]

Signal Transmission across Tile Assemblies: 3D Static Tiles Simulate Active Self-assembly by 2D Signal-Passing Tiles

> Jacob Hendricks^{1,*}, Jennifer E. Padilla^{2,**}, Matthew J. Patitz^{1,*}, and Trent A. Rogers^{3,*}

One Tile to Rule Them All: Simulating Any Tile Assembly System with a Single Universal Tile^{*,**}

Erik D. Demaine¹, Martin L. Demaine¹, Sándor P. Fekete², Matthew J. Patitz³, Robert T. Schweller⁴, Andrew Winslow⁵, and Damien Woods⁶

It's a Tough Nanoworld: in Tile Assembly, Cooperation is not (strictly) more Powerful than Competition

Florent Becker^{*} Pierre-Étienne Meunier[†]

The Simulation Powers and Limitations of Hierarchical Self-Assembly Systems

Jacob Hendricks^(⊠), Matthew J. Patitz, and Trent A. Rogers

Deptartment of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR, USA {jhendric,patitz,tar003}@uark.edu

Two Hands Are Better Than One (up to constant factors)

Sarah Cannon*	Erik D. Demaine [†]	Martin L. Demaine [†]	Sarah Eisenstat [†]
Matthew J. Patitz [‡]	Robert Schweller [‡]	Scott M. Summers§	Andrew Winslow*

Fruits of intrinsic universality

The tile assembly m David Doty* Jack H. Lutz [†] Scott M. Summ	Intrinsic universality and the computational power of self-assembly Damien Woods*	Them All: Assembly System Versal Tile ^{*,**}
Intrinsic universa require	 (9]	aine ¹ , Sándor P. Fekete ² , rt T. Schweller ⁴ , Damien Woods ⁶
Pierre-Etienne Mea Scott M. Summers [‡] Guil Da	2HAM, $\tau = c^3$ (IU [9]) UN [9]	in Tile Assembly,) more Powerful than tion
The two-handed t	2HAM, $\tau = c^2$ (IU [9])	e-Étienne Meunier [†]
intrinsi Erik D. Demaine* Mat Robert T. Schweller [§] So	polygon TAM, $\tau = 2$ [8] \bigcup [8] \bigcup [8] \bigcup [9] \bigcup [9] \bigcup [8] $(\bigcup$ [9])	s and Limitations ssembly Systems Patitz, and Trent A. Rogers
Signal Transmissio 3D Static Tiles Sin	hexagon TAM, $\tau = 2$ [8] $aTAM, \tau \ge 2$ (IU [11])	and Computer Engineering, retteville, AR, USA 003}@uark.edu
by 2D Sig	٢. [19]	er Than One factors)
Jacob Hendrick Matthew J. Pati	aTAM, $\tau = 1 - \frac{[19]}{\neq}$ Locally consistent aTAM, $\tau = 2$ (IU [12])	tin L. Demaine [†] Sarah Eisenstat [†] tt M. Summers [§] Andrew Winslow [*]

Complete references and more in:

A Brief Tour of Theoretical Tile Self-Assembly

Andrew Winslow¹

Université Libre de Bruxelles, Brussels, Belgium awinslow@ulb.ac.be

Abstract. The author gives a brief historical tour of theoretical tile self-assembly via chronological sequence of reports on selected topics in the field. The result is to provide context and motivation for the these results and the field more broadly.

Complete references and more in:

A Brief Tour of Theoretical Tile Self-Assembly

Andrew Winslow¹

Université Libre de Bruxelles, Brussels, Belgium awinslow@ulb.ac.be

Abstract. The author gives a brief historical tour of theoretical tile self-assembly via chronological sequence of reports on selected topics in the field. The result is to provide context and motivation for the these results and the field more broadly.