Size-Dependent Tile Self-Assembly:

Constant-Height Rectangles and Stability

Sándor Fekete, Robert Schweller, Andrew Winslow

Natural Self-Assembly

Tile Self-Assembly

Tile Self-Assembly

Tile Self-Assembly

Two-handed assembly

Two-handed assembly

Two-handed assembly

Terminal assemblies

 $\tau = 1$

Bigger assemblies require more bond strength.

Size-dependent assembly

- Replace temperature τ with increasing temperature function τ : N → N.
- Assemblies α , β can bond if total bond strength is $\geq \tau(\min(|\alpha|, |\beta|))$.

Size-dependent assembly

- Replace temperature τ with increasing temperature function τ : N → N.
- Assemblies α , β can bond if total bond strength is $\geq \tau(\min(|\alpha|, |\beta|))$.

Size-Dependent Assembly

Size-Dependent Assembly

Stability and Cuts

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

Stability and Cuts

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

1

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

1, 2

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

1, 2, 3

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

1, 2, 3, 4

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

1, 2, 3, 4, 5

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

1, 2, 3, 4, 5

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

1, 2, 3, 4, 5

Stable at $\tau \leq 1$

An assembly is <u>stable</u> at temperature τ if all <u>cuts</u> have strength $\geq \tau$.

Cuts of strength:

1, 2, 3, 4, 5

Stable at $\tau \leq 1$

Cuts of strength:

2, 3, 4, 5

Stable at $\tau \le 2$

Size-dependent assembly

- Replace temperature τ with increasing temperature function τ : N → N.
- Assemblies α , β can bond if total bond strength is $\geq \tau(\min(|\alpha|, |\beta|))$.

Size-dependent assembly

- Replace temperature τ with increasing temperature function τ : N → N.
- Assemblies α , β can bond if total bond strength is $\geq \tau(\min(|\alpha|, |\beta|))$.
- Assembly is <u>stable</u> if every cut into connected subassemblies α , β has strength $\geq \tau$ (min($|\alpha|$, $|\beta|$)).

Unstable assemblies break along weak cuts.

Size-Dependent Assembly

Size-Dependent Assembly

Size-Dependent Assembly

Questions

Can temperature functions do anything "useful", e.g. build shapes more efficiently?

Breakage looks complicated.

How hard is deciding if an assembly is stable?

Questions and Prior Work

Can temperature functions do anything "useful", e.g. build shapes more efficiently?

For fixed τ , NxN: $\Theta(\log(N)/\log\log(N))$ tile types, CxN: $\Theta(N^{1/C})$ tile types.

Breakage looks complicated. How hard is deciding if an assembly is stable? For fixed τ , polynomial-time (min-cut).

Questions and Answers

Can temperature functions do anything "useful", e.g. build shapes more efficiently?

There exists a set of tiles T that assembles 3xN rectangle for each $N \ge 7$, given appropriate $\tau(n)$.

Breakage looks complicated. How hard is deciding if an assembly is stable? coNP-complete.

Terminal assembly

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

Temperature function

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: otherwise \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\leq N - 2$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: otherwise \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$


```
\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: otherwise \end{cases}
```


$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: otherwise \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: otherwise \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

$$\tau(n) = \begin{cases} 3: n \le N - 6 \\ 4: N - 5 \le n \le N + 3 \\ 5: N + 4 \le n \le 2N - 2 \\ 8: \text{ otherwise} \end{cases}$$

NxN Square Construction

Same $\tau(n)$

coNP-hardness Reduction

Reduce from independent set in planar cubic Hamiltonian graphs ([Fleischer et al. 2010])

coNP-hardness Reduction

Reduce from independent set in planar cubic Hamiltonian graphs ([Fleischer et al. 2010])

coNP-hardness Reduction

Reduce from independent set in planar cubic Hamiltonian graphs ([Fleischer et al. 2010])

$$\tau(n) = \begin{cases} 1 : n < s/2 \\ 11|V| - k + 1 : otherwise \end{cases}$$

Conclusion

Temperature functions can yield sophisticated behavior even in simple systems.

Positive and negative: systems are provably more efficient, but (coNP-)harder to design.

Open: positive results with realistic temperature functions. What does "realistic" even mean?

Size-Dependent Tile Self-Assembly:

Constant-Height Rectangles and Stability

Sándor Fekete, Robert Schweller, Andrew Winslow

