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Tile Self-Assembly
• Unit square tiles that cannot rotate. 

• Up to four glues, one per side. 

• Tiles attach edgewise to form bonds. 

• Tiles attach to a growing seed assembly. 



Glues have strength
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Tile Self-Assembly
• Glues and bonds have strength. 

• System has temperature 𝜏. 

• Tile can attach to seed assembly if the 
total bond strength is at least 𝜏.



abstract Tile Assembly Model
• Introduced by Erik Winfree in mid-1990s. 

• Implemented in DNA at the same time. 

• Based on two previous works: 

• DNA lattices of Ned Seeman in 1980s. 

• Wang tilings of Hao Wang in 1960s.



!
Image from [Papadakis, Rothemund, Winfree 2004]: 

Scale bars = 100 nm
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t

Assembly of height n using  
ϴ(log(n))-sized tile set.

ϴ(2t)
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• Assembling n x n square at any 𝜏 requires  
Ω(log(n)/loglog(n))-sized tile set w.h.p. [RW 2000] 

• Tile set of size t contains O(t*log(t)) bits of 
information, n contains log(n) bits w.h.p. 

• Can assemble n x n squares at 𝜏 = 3 using  
O(log(n)/loglog(n))-sized tile set. [Adleman et al. 2001]
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Some Known Results
• Tile sets at 𝜏 = 2 are Turing-universal. [Winfree 1998]. 

• Simulate blocked cellular automata. 

• Blocked cellular automata are Turing-universal.  

• Tweak [Lindgren, Nordahl 1990] TU proof.
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Role of Tile Shape
• Assembling shapes requires arbitrarily large tile sets. 

• This is bad in practice: 

• Relative concentrations are low (slow assembly). 

• Number of glues is high (hard to engineer). 

• This is theoretically unsatisfying: geometry of self-
assembly is trivialized/ignored.
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Everything!

A few things.
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Polygonal Tiles

Cannot attach edgewise.



Main Result: Universality
• aTAM: square tiles that cannot rotate. 

• pfbTAM: polygonal tiles that can rotate. 

• Theorem: any aTAM tile set T at 𝜏, there is a single-
tile pfbTAM tile set at 𝜏 simulating T.
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• Idea: use a chain of simulations from aTAM tile set 
at 𝜏 ≥ 2 to single-tile pfbTAM tile set at 𝜏. 

• Simulation #1: eliminate strength-𝜏 glues. 

• Simulation #2: eliminate unwanted rotations. 

• Simulation #3: encode tile set as a single tile.

Proof of Universality



Reduction #1: Eliminating strength-𝜏 glues. 
• Simulate with a system of hexagonal tiles: 

• With no rotation. 

• With no strength-𝜏 glues.  

• With a multi-tile seed. 

• Works because of square vs. hex lattice differences.
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Reduction #2: Eliminate unwanted rotations. 

• Simulate with a system of hexagonal tiles: 

• With rotation. 

• With a multi-tile seed. 

• Use minimal glue sets of [Cannon et al. 2013] to 
maintain exposed glue invariants.
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Reduction #3: Encode tile set as a single tile. 

• Interleave hexagonal tile sides into a single  
equilateral+equiangular polygonal tile. 

• Use a single strength-𝜏 glue to replace  
multi-tile seed with single-tile seed. 

• Only usable when seed assembly is one tile.

Safe region 
 no longer usable



• Idea: use a chain of simulations from aTAM tile set 
at 𝜏 ≥ 2 to single-tile pfbTAM tile set at 𝜏. 

• For input aTAM tile set of t tiles,  
resulting pfbTAM tile has O(t) sides. 

• Also works for aTAM tile sets at 𝜏 = 1. (Easy)

Proof of Universality



What about a single 
tile without rotation?
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• Theorem: can compute t steps of any blocked 
cellular automaton machine at 𝜏 = 3, starting with a 
seed assembly of size ϴ(t). 

• Simulation #1: Blocked cellular automata with  
wedge-shaped 𝜏 = 2 aTAM tile set. 

• Simulation #2: wedge-shaped 𝜏 = 2  
aTAM tile set with single polygonal tile at 𝜏 = 3.
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Simulation #1: BCA with wedge-shaped 𝜏 = 2 aTAM tile set.

Single Non-rotatable Tile



Tape/Seed

ϴ(t)

t
BCA Tableau

Simulation #1: BCA with wedge-shaped 𝜏 = 2 aTAM tile set.
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• Theorem: can compute t steps of any blocked 
cellular automaton machine at 𝜏 = 3, starting with a 
seed assembly of size ϴ(t). 

• Also ϴ(t) steps of a Turing machine.  

• Theorem: starting with a seed of 3 or less tiles, 
either no tiles can attach or infinite assembly. 

• So no self-seeding. 

• Conjecture: finite assembly of n-tile shape requires  
seed with Ω(n1/2) tiles.
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• A single rotatable tile at 𝜏 = 2 can simulate every 
tile assembly system, given an appropriate seed. 

• One tile to simulate them all. 

• A single non-rotatable tile at 𝜏 = 3 can do non-trivial 
computation (linear in seed size). 

• How much more?

Conclusions
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