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complex superstructures.

O00@
OQ00@
C00@



Selt-Assembly

Simple particles coalescing into
complex superstructures.

o202

Q‘QQQ

O



Selt-Assembly

Simple particles coalescing into
complex superstructures.

o *




Selt-Assembly

Simple particles coalescing into
complex superstructures.




atural self-assembly

- . P
AN i T e
& 4.

S

o ™

P = A
/»-_/f H :




| 2| T

ml®

Xi*.. B
‘aa.B'

nas

s 49

=
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Seed tile
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Tile Self-Assembly

e Unit square tiles that cannot rotate.
* Up to four glues, one per side.
* Tiles attach edgewise to form bonds.

e [iles attach to a growing seed assembly.



Glues have strength
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Bonds have strength
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At temperature ¢ =1

B
O 1>7 [
-
2>T
‘I_Ii E

vV




At temperature ¢ =1

[ ] [ ]
+ 1]
-




At temperature ¢ = 2
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Tile Self-Assembly

* Glues and bonds have strength.

e System has temperature .

* Tile can attach to seed assembly if the
total bond strength is at least .



abstract Tile Assembly Model

 Introduced by Erik Winfree in mid-1990s. ¢

* Implemented in DNA at the same time. %‘

 Based on two previous wWorks:
 DNA lattices of Ned Seeman in 1980s.

* \Wang tilings of Hao Wang in 1960s.



Image from [Papadakis, Rothemund, Winfree 2004






















Implementation

Theoretical model
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Some Known Results

e Can assemble n x n squares using O(log(n))-sized
tile set at r = 2. [Rothemund, Winfree 2000]
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information, n contains log(n) bits w.h.p.



Some Known Results

e Can assemble n x n squares using O(log(n))-sized
tile set at r = 2. [Rothemund, Winfree 2000]

« Assembling n x n square at any = requires
Q(log(n)/loglog(n))-sized tile set w.h.p. [RW 2000]

* Tile set of size t contains O(t*log(t)) bits of
information, n contains log(n) bits w.h.p.

« Can assemble n x n squares at ¢ = 3 using
O(log(n)/loglog(n))-sized tile set. [Adleman et al. 2001]



Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].

e Simulate blocked cellular automata.



Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].

e Simulate blocked cellular automata.




Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].

e Simulate blocked cellular automata.




Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].

e Simulate blocked cellular automata.




Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].

e Simulate blocked cellular automata.




Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].

e Simulate blocked cellular automata.

L
L
L
L
JL
L
1L
g

L




Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].

e Simulate blocked cellular automata.

-
>
-
>
—>
—
I ™
L
—>
L
—>
>

t 4+ 4+ ¢+ 4+ ¢+ 4+ ¢ 4 4 4 ¢t ¢
1 1 1 1 01 @1 @1
4
I

—
I
—
I
>
I




Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].
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Some Known Results

e [ile sets at r = 2 are Turing-universal. [Winfree 1998].

e Simulate blocked cellular automata.
* Blocked cellular automata are Turing-universal.

* Tweak [Lindgren, Nordahl 1990] TU proof.
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Some Known Results

« Can construct a scaled version of any shape at ¢ = 2 using
O(K/log(K))-sized tile set. [Soloveichik, Winfree 2007]

K = Kolmogorov complexity of polyomino.
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Role of Tile Shape

 Assembly is mostly combinatorial (glue-based).
* ttiles contain O(t*log(t)) bits of information.

 Assembling shapes requires arbitrarily large tile sets.



Role of Tile Shape

 Assembling shapes requires arbitrarily large tile sets.
 Thisis bad in practice:
* Relative concentrations are low (slow assembly).
 Number of glues is high (hard to engineer).

* This is theoretically unsatistying: geometry of self-
assembly is trivialized/ignored.
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Our Work

* (Generalize square tiles to polygonal tiles.
 Removes Q(log(n)/loglog(n)) lower bound.
* Prove results on a single polygonal tile can do:
* With rotation. Everything!

* Without rotation. A few things.
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Polygonal liles

e (Glues on each side.

* Glues have color, strength.

* Jiles bond edgewise.
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Polygonal liles

Cannot attach edgewise.
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Main Result: Universality

 alAM: square tiles that cannot rotate.

 pfbTAM: polygonal tiles that can rotate.

« Theorem: any alAM tile set T at 7, there Is a single-
tile pfbTAM tile set at r simulating T.
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Proof of Universality

e |dea: use a chain of simulations from aTAM tile set
at = > 2 to single-tile ptbTAM tile set at .

o Simulation #1: eliminate strength-z glues.

e Simulation #2: eliminate unwanted rotations.

e Simulation #3: encode tile set as a single tile.



Reduction #1: Eliminating strength-z glues.

e Simulate with a system of hexagonal tiles:

 \With no rotation.

« With no strength-z glues.

e \With a multi-tile seed.

* Works because of square vs. hex lattice differences.




Simulation #1: Eliminating strength-z glues.
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Reduction #2: Eliminate unwanted rotations.

e Simulate with a system of hexagonal tiles:
* With rotation.
* With a multi-tile seed.

e Use minimal glue sets of [Cannon et al. 2013] to
maintain exposed glue invariants.



Reduction #3: Encode tile set as a single tile.

* |nterleave hexagonal tile sides into a single
equilateral+equiangular polygonal tile.



Reduction #3: Encode tile set as a single tile.

* |nterleave hexagonal tile sides into a single
equilateral+equiangular polygonal tile.

S




Reduction #3: Encode tile set as a single tile.

* |nterleave hexagonal tile sides into a single
equilateral+equiangular polygonal tile.

S

* [ile’'s rotation determines hexagonal tile simulated.




Reduction #3: Encode tile set as a single tile.

* |nterleave hexagonal tile sides into a single
equilateral+equiangular polygonal tile.

S

* [ile’'s rotation determines hexagonal tile simulated.

« No strength-r glues implies only hex lattice formed.




Reduction #3: Encode tile set as a single tile.

* |nterleave hexagonal tile sides into a single
equilateral+equiangular polygonal tile.

e Use a single strength-z glue to replace
multi-tile seed with single-tile seed.

e Self-seeding.
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Reduction #3: Encode tile set as a single tile.

* |nterleave hexagonal tile sides into a single
equilateral+equiangular polygonal tile.

e Use a single strength-z glue to replace
multi-tile seed with single-tile seed.

* Only usable when seed assembly is one tile.

Safe region
no longer usable




Proof of Universality

e |dea: use a chain of simulations from aTAM tile set
at = > 2 to single-tile ptbTAM tile set at .

 For input aTAM tile set of t tiles,
resulting ptbTAM tile has O(t) sides.

e Also works for aTAM tile sets at = = 1. (Easy)



What apbout a single
tile without rotation?



Single Non-rotatable Tile

 Theorem: can compute t steps of any blocked
cellular automaton machine at r = 3, starting with a

seed assembly of size O(1).



Single

Non-rotatable lile

 Theorem: can compute t steps of any blocked
cellular automaton machine at r = 3, starting with a

seed assembly of size O(1).

o Simulation #1: Blocked cellular automata with
wedge-shaped = = 2 alAM tile set.

e Simulati

alAM ti

on #2:. wedge-shaped 7 = 2
e set with single polygonal tile at 7 = 3.



Single Non-rotatable Tile

Simulation #1: BCA with wedge-shaped = = 2 aTAM tile set.
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-rotatapble Tile
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Simulation #1: BCA with wedge-shaped r = 2 aTAM tile set.




Single Non-rotatable Tile

Simulation #2: wedge-shaped = = 2 aTAM tile set
with single polygonal tile at 7 = 3.
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Simulation #2: wedge-shaped = = 2 aTAM tile set
with single polygonal tile at 7 = 3.



Single Non-rotatable Tile

Simulation #2: wedge-shaped = = 2 aTAM tile set
with single polygonal tile at 7 = 3.
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Single Non-rotatable Tile

Simulation #2: wedge-shaped = = 2 aTAM tile set
with single polygonal tile at 7 = 3.
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Single Non-rotatable Tile

 [heorem: can compute t steps of any blocked
cellular automaton machine at r = 3, starting with a

seed assembly of size ©(1).
* Also O(t) steps of a Turing machine.

 [heorem: starting with a seed of 3 or less tiles,
either no tiles can attach or infinite assembly.

* S0 No self-seeding.

e Conjecture: finite assembly of n-tile shape requires
seed with Q(n1/2) tiles.



Conclusions

e A single rotatable tile at r = 2 can simulate every
tile assembly system, given an appropriate seed.
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Conclusions

e A single rotatable tile at r = 2 can simulate every
tile assembly system, given an appropriate seed.

e —

e One tile to simulate them all.
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e A single non-rotatable tile at r = 3 can do non-trivial
computation (linear in seed size).

e How much more?



Coauthors:

Erik Martin Sandor Robert Matthew Damien
Demaine Demaine Fekete Schweller Patitz Woods

Research supported in part by NSF grants CCF-1117672,
CDI-0941538, 0832824, 1317694, CCF-1219274, CCF-1162589.

Research initiated at Bellairs Research Institute
Winter Workshop on Computational Geometry, 2012.



