
Tiling Isohedrally with a Polyomino

Andrew Winslow  
(joint work with Stefan Langerman)

Polyominoes
Rectilinear simple polygons with unit edge lengths

d(dl)3uluru2r3uru2rdr2drd(ldlu)2l

Boundary words

Plane tiling

Isohedral

Plane tiling

Isohedral

Plane tiling

Plane tiling

Isohedral

Plane tiling

Isohedral

Plane tiling

Isohedral

Plane tiling

Isohedral

Plane tiling

Plane tiling

Anisohedral

A shape that admits an
isohedral tiling is isohedral.

A shape that admits a tiling, but no  
isohedral tiling is anisohedral.

A tiling is either isohedral or anisohedral.

Are there anisohedral shapes?

1902: Hilbert thinks no.  
Premise of 18th of his famous 23 problems.

1935: Heesch proved yes.

1968: Kershner proved yes for convex shapes.

[Rhoads 2005]:

A new anisohedral pentagon

4 days ago

Isohedral boundary criteria

[Heesch, Kienzle 1963]

[Heesch, Kienzle 1963]

Isohedral boundary criteria

[Heesch, Kienzle 1963]

(not polyomino)

Isohedral boundary criteria

A
B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

7 isohedral criteria

A
B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

7 isohedral criteria

Translation criterion

A

bA

B

bB

C

bC

X = x1x2 . . . xn
b
X = xnxn�1 . . . x1

with
u = d
d = u

r = l
l = r

Translation criterion

A = r2dldr2u2r

bA = ld2l2urul2

B

bB

C

bC

X = x1x2 . . . xn
b
X = xnxn�1 . . . x1

with
u = d
d = u

r = l
l = r

Translation criterion

A B

C

bAbB

bC

Translation criterion

Conway’s criterion

A
B

C

bA

D

E

B, C, D, E palindromes

X = x1x2 . . . xn
b
X = xnxn�1 . . . x1

with
u = d
d = u

r = l
l = r

A = r2d2rurdru3r(dr)2

B

C = ldrd2rdl

bA = (lu)2ld3luldlu2l2

D = ur2ul5ur2u

E

B, C, D, E palindromes

Conway’s criterion

X = x1x2 . . . xn
b
X = xnxn�1 . . . x1

with
u = d
d = u

r = l
l = r

A
B

C

bA

D

E

bA

Conway’s criterion

Problem

Yes. No. No.

Decide whether a polyomino is isohedral.
(passes any of 7 criteria)

Yes.

Problem: decide whether polyomino P
with n sides is isohedral.

• [Keating, Vince 1999]: O(n18)
• Naive checking of criteria: O(n6)
• [Langerman, W.]: O(n*log2(n))

General case (all 7 criteria):

Problem: decide whether polyomino P
with n sides is isohedral.

• [Keating, Vince 1999]: O(n18)
• Naive checking of criteria: O(n6)
• [Langerman, W.]: O(n*log2(n))

General case (all 7 criteria):

• [Gambini, Vuillon 2007]: O(n2)
• [Provençal 2008]: O(n*log3(n))
• [Brlek, Provençal, Fédou 2009]: O(n)
• [W. 2015]: O(n)

Translation criterion only:

(special cases)

Problem: decide whether polyomino P
with n sides is isohedral.

Algorithm

A
B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

Test the input boundary for each criterion,
using structural and algorithmic results on words.

Test the input boundary for each criterion,
using structural and algorithmic results on words.

Algorithm

A
B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

Translation criterion

Testing for translation factorization
A

bA

B

bB

C

bC

Decide if an input boundary word W has
a translation factorization .W = ABC bA bB bC

Step 1: compute all admissible factors.
A

bA

B

bB

C

bC

A B

C

bAbB

bC

Testing for translation factorization

For every factor A:

[Brlek et al. 2009]:

Can compute all 2n admissible factors in O(n) time.

W = AU bAV with |U | = |V |
U [1] 6= U [�1], V [1] 6= V [�1]

Call these factors admissible.

+

Can compute all 2n admissible factors in O(n) time.
A

bA

B

bB

C

bC

A B

C

bAbB

bC

Factorization exists iff admissible factors A,B,C  
that are consecutive with |ABC| = n/2.

Testing for translation factorization

“Solution”: for each choice of A, look for B, C
with |ABC| = n/2 (in O(1) time).

Lemma: X has factorization into two admissible factors  
if and only if X = PmaxS or X = PSmax with:
• Pmax the longest prefix admissible factor of X, or
• Smax the longest suffix admissible factor of X.
and P, S admissible factors.

S
max

P
max X

P
max

S
X

S
max

P
X

or

Proof follows that of similar result by [Galil, Seiferas 1978]

Finding consecutive A,B,C with |ABC| = n/2.

A

B

C

C

B

A

• For each A, search for longest B such that |AB| ≤ n/2,  
check whether factor C with |ABC| = n/2 is admissible. 

• For each C, search for longest B such that |BC| ≤ n/2,  
check whether factor A with |ABC| = n/2 is admissible.

Finding consecutive A,B,C with |ABC| = n/2.

A

B

C

C

B

A

• For each A, search for longest B such that |AB| ≤ n/2,  
check whether factor C with |ABC| = n/2 is admissible. 

• For each C, search for longest B such that |BC| ≤ n/2,  
check whether factor A with |ABC| = n/2 is admissible.

O(n) time using two-finger scans.

Testing for translation factorization
1. Compute all 2n admissible factors. 

2. Sort admissible factors starting at each letter. 
Repeat for ending at each letter. 

3. Two-finger scans to search for A,B,C  
that are consecutive with |ABC| = n/2.

1. Compute all 2n admissible factors. 

2. Sort admissible factors starting at each letter. 
Repeat for ending at each letter. 

3. Two-finger scans to search for A,B,C  
that are consecutive with |ABC| = n/2.

Testing for translation factorization

O(n) time for each step, O(n) total time.

Algorithm running times
A

B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

Algorithm running times
A

B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

O(n)

Algorithm running times
A

B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

O(n) O(n*log2(n))

Algorithm running times
A

B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

O(n) O(n*log2(n)) O(n)

O(n*log(n)) O(n) O(n*log(n))O(n*log(n))

Algorithm running times
A

B

C

bA

D

E

B, C, D, E palindromes

A

bA

B

bB

C

bC

A

B

C

A, B 90-dromes, C palindrome

A

B

f⇥(B)
bA

C

f�(C)
A

B

f⇥(C) C

f⇥(B)

bA

A

B

bA
D

f⇥(D)

C

B, C palindromes

C

f⇥(B)

f�(D)

A

B

D

A, C palindromes

⇥

� � �

�
= ±90

�

O(n) O(n*log2(n)) O(n)

O(n*log(n)) O(n) O(n*log(n))O(n*log(n))

O(n*log2(n)) total time

Known: O(n*log2(n))-time algorithm for deciding
if a polyomino tiles the plane isohedrally.

Open Problems

Known: O(n*log2(n))-time algorithm for deciding
if a polyomino tiles the plane isohedrally.

Open Problems

O(n)-time algorithm?

Known: O(n*log2(n))-time algorithm for deciding
if a polyomino tiles the plane isohedrally.

Enumeration of tilings in O(n*log^2(n) + k) time?

Open Problems

O(n)-time algorithm?

Known: O(n*log2(n))-time algorithm for deciding
if a polyomino tiles the plane isohedrally.

Enumeration of tilings in O(n*log^2(n) + k) time?

Open Problems

Extend inputs to polygons?

O(n)-time algorithm?

Known: O(n*log2(n))-time algorithm for deciding
if a polyomino tiles the plane isohedrally.

Enumeration of tilings in O(n*log^2(n) + k) time?

Open Problems

Extend inputs to polygons?

An FPT algorithm for k-isohedral tilings?

O(n)-time algorithm?

Open Problems
Discussed more in the paper on arXiv:

Tiling Isohedrally with a Polyomino

Andrew Winslow  
(joint work with Stefan Langerman)

