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Polyominoes
Rectilinear simple polygons with unit edge lengths
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Plane tiling

Anisohedral



A shape that admits an 
isohedral tiling is isohedral.

A shape that admits a tiling, but no  
isohedral tiling is anisohedral.

A tiling is either isohedral or anisohedral.



Are there anisohedral shapes?

1902: Hilbert thinks no.  
Premise of 18th of his famous 23 problems.

1935: Heesch proved yes.

1968: Kershner proved yes for convex shapes.

[Rhoads 2005]:



A new anisohedral pentagon

4 days ago



Isohedral boundary criteria 

[Heesch, Kienzle 1963]
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[Heesch, Kienzle 1963]

(not polyomino)
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Problem

Yes. No. No.

Decide whether a polyomino is isohedral.
(passes any of 7 criteria)

Yes.



Problem: decide whether polyomino P 
with n sides is isohedral.



• [Keating, Vince 1999]: O(n18)
• Naive checking of criteria: O(n6)
• [Langerman, W.]: O(n*log2(n))

General case (all 7 criteria):
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• [Keating, Vince 1999]: O(n18)
• Naive checking of criteria: O(n6)
• [Langerman, W.]: O(n*log2(n))

General case (all 7 criteria):

• [Gambini, Vuillon 2007]: O(n2)            
• [Provençal 2008]: O(n*log3(n))                      
• [Brlek, Provençal, Fédou 2009]: O(n)
• [W. 2015]: O(n) 

Translation criterion only:

(special cases)

Problem: decide whether polyomino P 
with n sides is isohedral.
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using structural and algorithmic results on words.



Test the input boundary for each criterion,
using structural and algorithmic results on words.
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Testing for translation factorization
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Decide if an input boundary word W has 
a translation factorization                             .W = ABC bA bB bC



Step 1: compute all admissible factors.
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Testing for translation factorization

For every factor A:

[Brlek et al. 2009]: 

Can compute all 2n admissible factors in O(n) time.         

W = AU bAV with |U | = |V |
U [1] 6= U [�1], V [1] 6= V [�1]

Call these factors admissible.

+



Can compute all 2n admissible factors in O(n) time.
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Factorization exists iff admissible factors A,B,C  
that are consecutive with |ABC| = n/2. 

Testing for translation factorization

“Solution”: for each choice of A, look for B, C 
with |ABC| = n/2 (in O(1) time).



Lemma: X has factorization into two admissible factors  
if and only if X = PmaxS or X = PSmax with:    
• Pmax the longest prefix admissible factor of X, or
• Smax the longest suffix admissible factor of X.
and P, S admissible factors.

S
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P
max X

P
max

S
X

S
max

P
X

or

Proof follows that of similar result by [Galil, Seiferas 1978]



Finding consecutive A,B,C with |ABC| = n/2.
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• For each A, search for longest B such that |AB| ≤ n/2,  
check whether factor C with |ABC| = n/2 is admissible. 

• For each C, search for longest B such that |BC| ≤ n/2,  
check whether factor A with |ABC| = n/2 is admissible.



Finding consecutive A,B,C with |ABC| = n/2.
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• For each A, search for longest B such that |AB| ≤ n/2,  
check whether factor C with |ABC| = n/2 is admissible. 

• For each C, search for longest B such that |BC| ≤ n/2,  
check whether factor A with |ABC| = n/2 is admissible.

O(n) time using two-finger scans.



Testing for translation factorization
1. Compute all 2n admissible factors. 

2. Sort admissible factors starting at each letter. 
Repeat for ending at each letter. 

3. Two-finger scans to search for A,B,C  
that are consecutive with |ABC| = n/2.



1. Compute all 2n admissible factors. 

2. Sort admissible factors starting at each letter. 
Repeat for ending at each letter. 

3. Two-finger scans to search for A,B,C  
that are consecutive with |ABC| = n/2.

Testing for translation factorization

O(n) time for each step, O(n) total time.
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Known: O(n*log2(n))-time algorithm for deciding 
if a polyomino tiles the plane isohedrally.

Enumeration of tilings in O(n*log^2(n) + k) time?

Open Problems

Extend inputs to polygons?

An FPT algorithm for k-isohedral tilings?

O(n)-time algorithm?



Open Problems
Discussed more in the paper on arXiv:
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