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Connecting Obstacles in Vertex-Disjoint Paths
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Abstract

Given a set of k disjoint convex polygonal obsta-
cles inside a triangular container, we add straight-line
noncrossing edges such that each obstacle has three
vertex-disjoint paths to the container. We prove com-
binatorial bounds on the minimum number of edges
that are always sufficient and sometimes necessary.
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Figure 1: A triangular container with disjoint convex ob-
stacles.

1 Introduction

A given graph is said to be k-connected if it remains
connected upon deleting any k£ — 1 vertices along with
the incident edges. A k-connected graph has k vertex-
disjoint paths between any two nodes. An important
area of research in graph theory and computational
geometry is the problem of connectivity augmenta-
tion. The k-connectivity augmentation problem asks
for the minimum number of edges needed to augment
a graph to make it k-connected. Edge-connectivity
augmentation is defined analogously.

In abstract graphs, the connectivity augmentation
problem can be solved in linear time for k = 2 [4, 6],
and in polynomial time for any fixed & [5]. For a given
planar graph, the augmentation that has to preserve
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graph planarity, is called planarity-preserving aug-
mentation. Unfortunately, the problem is NP-hard
even for k = 2 [3]. For a given planar graph that has
already been embedded in the plane, if the augmen-
tation has to respect the given embedding, the aug-
mentation is said to be embedding preserving. For a
planar straight-line graph, the minimum embedding-
preserving augmentation using noncrossing straight-
line edges is NP-Hard for any 2 < k <5 [7].

There are two possible approaches to get around
the NP-Hardness of the augmentation problem:
(i) approximation algorithms (e.g., there is a 2-
approximation algorithm for planarity-preserving
connectivity augmentation for k£ = 2, which runs in
O(nlogn) time [3]); and (i) proving combinatorial
bounds on the number of new edges in terms of the
number of vertices (e.g., Al-Jubeh et al. [2] show
that 2n — 2 new edges are always sufficient and some-
times necessary for the embedding-preserving 3-edge-
connectivity augmentation of a planar straight line
graph with n vertices if augmentation is possible).
T6th and Valtr [8] characterized the planar straight
line graphs that can be augmented to 3-connectivity.
These graphs are called 3-augmentable. It remains an
open problem what is the minimum number of new
edges that are sufficient for the 3-connectivity aug-
mentation of every 3-augmentable planar straight line
graphs with n vertices.

In this paper we consider a special type of augmen-
tation problem (see the formulation below) and pro-
vide combinatorial bounds on the minimum number
of necessary and sufficient new edges.

Figure 2: Adding noncrossing straight-line edges so as
to make each obstacle connected by three vertex-disjoint
paths to the triangular container.
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1.1 Problem Definition

Given a set of k disjoint convex polygonal obstacles
inside a triangular container, add straight-line non-
crossing edges such that each obstacle has 3 vertex-
disjoint paths to the three vertices of the container.
The three paths should start at distinct vertices of the
obstacle and end at distinct vertices of the container.
They can use the edges of the obstacles arbitrarily.

1.2  When is Augmentation Possible?

If the obstacles are not convex, it might not be pos-
sible at all to add edges such that each obstacle has
three vertex-disjoint paths to the container. In Fig-
ure 3 the inner-most obstacle “sees” only three other
vertices, all of which belong to the same obstacle.
Since it is not possible to route three vertex disjoint
paths along the same obstacle without adding edges
in the interior of the obstacle, this example is not aug-
mentable.

Figure 3: Non-convex obstacles may not be connected to
the boundary by three vertex-disjoint paths.

For a set of disjoint convex obstacles inside the
triangular container, every triangulation of the free
space around the obstacles is a 3-connected graph [8].
It is easy to see that there are three vertex-disjoint
paths from every obstacle to the container along the
edges of a triangulation. For any particular obsta-
cle, add a new internal node p and connect it to the
boundary of the obstacle at three distinct vertices.
Similarly, add a node ¢ outside the triangular con-
tainer and add the three edges connecting ¢ to the
corners of the container. It can be easily verified
that the new graph is still 3-connected, which implies
that there are three vertex-disjoint paths from p to q.
Hence, there are three vertex-disjoint paths that start
at distinct vertices of the obstacle and end at distinct
vertices of the container. These three paths can be
determined using any max-flow algorithm [1].

Although a triangulation contains the desired aug-
mentation as a subgraph, it may contain too many
edges. In this paper we show how to perform this
augmentation by using much fewer edges.
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Figure 4: A triangulation of the free space around convex
obstacles in a triangular container is a 3-connected graph,
and it contains the desired augmentation as a subgraph.

1.3 Our Results

e For k£ convex obstacles, where k can be arbitrar-
ily large, 3k — 1 edges are sometimes necessary
(Section 2).

e For k convex obstacles, where k can be arbitrarily
large but each obstacle has at most s sides, 3k —

’;:} edges are sometimes necessary (Section 2).

e For k convex obstacles, 3k edges are always
enough (Section 3).

Once each obstacle has three vertex-disjoint paths
to the container, we can get a 3-connected planar
graph by adding an edge for each degree-2 vertex [2].

2 Lower Bound Constructions

When there is only one convex obstacle, three edges
are obviously required (and sufficient) for connecting
it to the container. However, for k (an arbitrarily-
large k) convex obstacles, at least 3k — 1 edges are
necessary in the worst case. Our lower bound con-
struction is depicted in Figure 5. It includes one large
convex obstacle which hides one small obstacle be-
hind each side (except the base), such that each small
obstacle can “see” only three different vertices (the
top vertex of the container and two adjacent vertices
of the large obstacle). Thus, we need three edges for
each small obstacle and only two edges for the larger
obstacle, connecting its two bottom vertices to the
two endpoints of the base of the container.

The large obstacle in the above construction is a
convex k-gon, and so the lower bound 3k — 1 does
not hold if the every obstacle has at most s sides,
for some fixed 3 < s < k. In that case we use a
similar construction, in which a big s-sided obstacle
hides s — 1 smaller obstacles behind all its sides ex-
cept one, and the construction is repeated recursively.
This construction corresponds to a complete tree with
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Figure 5: k convex obstacles, edges needed: 3k — 1.

branching factor s — 1, in which the smaller obstacles
are the children of a larger obstacle. For a fixed value
of s, we set h as the height of the complete (s —1)-ary
tree. Thus, the number of obstacles,

Lot )

can be as high as we desire. The number of leaves
in the tree is (s — 1)"~!. A simple manipulation of
Equation 1 shows that this number equals k& — fj
Hence, the number of internal nodes in the tree is ’;j
For the 3-vertex-disjoint path augmentation, each leaf
obstacle needs three edges and each non-leaf obstacle
needs two edges. The total number of edges required

is, thus,

k-1 k-1 k-1
- ) A [ S
3<k 5—1>+ (5—1) 3 s—1’

which ranges from %k + % to 3k — 1 for 3 < s <k.

k=

Figure 6: Construction for triangular obstacles.

3 The Upper Bound

We now prove that 3k edges are always sufficient
for making the given set of obstacles O 3-vertex-
connected to the triangular container C. Initially,
there exists a triangulation T" of the free space inside
C that is the 3-connected, which is not always true for
non-convex containers. The algorithm recurses such
that each subproblem is on a polygonal container P
with 3-connected triangulation (Lemmas 1 and 2).
We designate the three corners of the C' with the
colors red (vg), green (vg), and blue (vg). Each ob-
stacle is charged up to three times, once for each color.

An obstacle is marked to indicate its connection to a
particular colored corner of the container. If a path
to a designated vertex goes through another obstacle,
then the latter obstacle is charged for one of the edges.
For each edge at least one obstacle is charged, and no
obstacle is charged more than thrice, which implies
that the entire process adds at most 3k edges. The
procedure AUGMENT implements this process, which
is invoked by a call AUGMENT(C,vg, v, vB).
UR

Figure 7: Vertex-disjoint paths from the obstacle o.

Algorithm 1 AUGMENT(P,vg,vG,vEB)
Pick an arbitrary obstacle o inside P.
Find three vertex-disjoint paths mg, 7g, and 7p to
the vertices vg, vg, and vg, respectively.
for all paths m;, where i € {R,G, B} do
m; = SHORTENPATH(;)
for all edges e along the path m; from o to v; do
Mark the obstacle incident to e for v;
if e is a part of some obstacle boundary then
Go to next edge.
else if e in incident to the boundary of P then
Add the edge e and exit loop.
else if e in incident to the vertex v; then
Add the edge e and exit loop.
else if e is incident to an marked obstacle
then
Add the edge e and exit loop.
else
Add the edge e.
end if
end for
end for
HANDLESUBPROBLEM(P, 0, TR, T¢)
HANDLESUBPROBLEM(P, 0, TR, TR)
HANDLESUBPROBLEM(P, 0, 75, 77¢;)

Lemma 1 For a polygon P such that every triangu-
lation of P contains a 2-cut C; then all the designated
vertices on P are not on the same side of C;.

Proof. As a result of the subroutine SHORTENPATH,
the polygonal boundary on the either side of any 2-cut
cannot consist of only one path. Since there are al-
ways two vertex disjoint paths forming the polygonal
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Figure 8: Recursing on the subproblems. Empty circles
denote designated vertices in subproblems.

oo

Figure 9: Shortening a vertex disjoint path.

Algorithm 2 SHORTENPATH(7)

Let {v1,va,...,0,} be the vertices in path 7.
while for some i < j — 1, v; and v; see each other
do
Let P’ be closed polygon formed by 7 and the line
segment v;v;. Assume we are allowed to travel
along .
Let m; ; be shortest geodesic path between v; and
vj inside P’.
Replace the portion of m between v; and v; by
4,5
Exit loop when 7 stops changing.
end while
return =

boundary, there must a designated vertex or a vertex
of the obstacle o present. O

Lemma 2 Given three vertex-disjoint paths from an
obstacle to vg, vg, and vg, the path to vy cannot
touch the boundary of the polygon P between the
vertices vg and vg.

Proof. The lemma follows from the fact that the
three paths are vertex disjoint. O

4 Open problems

e Close the gap between the lower and upper
bounds. We conjecture that the lower bound is
the correct one. Hence, give an augmentation
algorithm that adds only 3k — % edges.
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Algorithm 3 HANDLESUBPROBLEM(P, o, ;, ;)

Obstacle o together with m; and m; creates a closed
polygon P’ inside P
Let v;, v; be the designated vertices of the paths ;
and 7;.
Let l € {R,G,B}\ {i,j}.
Designate a vertex on the obstacle o as v;.
if There is a 3-connected triangulation of P’ then
AUGMENT(P’, v;,v;,v;)
else
Let C'7 be the leftmost 2-cut.
Let P; be the polygon created by Cj.
Let vgr be one of the designated vertices the right
of the Cy (w.l.o.g).
Designate the two vertices of the 2-cut as Vi and
VB
AUGMENT(Py, vR, vg, UB)
HANDLESUBPROBLEM(P \ P1,Cy,m;, 7))
end if

e Provide combinatorial bounds for 3-connectivity
augmentation of 2-regular graphs.

e Similarly, set combinatorial bounds for 3-
connectivity augmentation of a set of line seg-
ments (a 1-regular graph).
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