
CCCG 2021, Halifax, Canada, August 10–12, 2021

Turning Around and Around:
Motion Planning through Thick and Thin Turnstiles

Aster Greenblatt∗ Oscar Hernandez† Robert A. Hearn‡ Yichao Hou§ Hiro Ito¶ Minwoo Kang�

Aaron Williams∗∗ Andrew Winslow††

Abstract

We examine the computational complexity of turnstile
puzzles, which are grid-based tour puzzles with walls
and turnstiles. A turnstile is a wall that can be rotated
in 90° increments, either clockwise or counter-clockwise,
around a central pivot when pushed by the player’s to-
ken. In a ‘thick’ turnstile, the pivot and arms occupy
cells of the grid, whereas in a ’thin’ turnstile the pivot
and arms occupy grid points and lines, respectively. We
prove that reaching an exit is PSPACE-hard, even when
restricted to just one of the following turnstiles types:

, , , , , or . This establishes
PSPACE-hardness for a dozen video games spanning
several decades, including Kwirk (1989), Pokemon Ruby
(2002), and Super Mario Odyssey (2017). Our hardness
results are obtained by applying the motion planning
framework in Jayson Lynch’s PhD thesis A framework
for proving the computational intractability of motion
planning problems [MIT, 2020]. We also show that the
decision problem can be solved in polynomial-time when
restricted to or . We also formulate new open
problems, and provide a survey of puzzles and games
using turnstiles, which have also been called rotating
doors, revolving gates, and spinning blocks.

1 Introduction

This article explores the familiar territory of grid-based
motion planning, but with a few twists. In Section 1.1
we discuss the mechanism that we investigate, and in
Section 1.2 we specify the tool that we will use.

∗Division of Science, Mathematics, and Computing, Bard Col-
lege at Simon’s Rock, asterj.greenblatt@gmail.com

†Department of Mathematics & Statistics, University of Alaska
Fairbanks, oihernandez@alaska.edu

‡bob@hearn.to
§yhou17@simons-rock.edu
¶School of Informatics and Engineering, University of Electro-

Communications, itohiro@uec.ac.jp
�Electrical Engineering and Computer Science, University of

California, Berkeley, minwoo kang@berkeley.edu
∗∗Department of Computer Science, Williams College,

aaron.williams@williams.edu
††andrewwinslow@gmail.com

(a) Level 1. (b) Fortree City.

Figure 1: Solutions from (a) Kwirk, and (b) Pokemon Ruby.

1.1 Pushing, Pulling, Sliding, . . . and Rotating

There have been numerous studies on the computa-
tional complexity of grid-based puzzles and games that
use pushing, pulling, or sliding as a core mechanism,
with early contributions involving pushing by Fryers
and Greene [11], Dor and Zwick [10], and Culberson
[5]. More recently, in the Games in Particular section
of Hearn and Demaine’s Games, Puzzles, and Compu-
tation, 7 of the 10 puzzles use some form of pushing or
sliding, including generalizations of Dad’s Puzzle and
Sokoban [15]. Research in this area is still active, with
Barr et al. using a side-view and normal gravity [4], and
Ani et al. [1] on block pulling being recent examples.

We consider a push-based rotation mechanism. Turn-
stiles have appeared in physical puzzles and video games
for at least four decades, with two examples in Figure
1. Our main result is that single-player turnstile puzzles
are PSPACE-hard, even when restricted to any of the
following shapes: , , , , , or .

33rd Canadian Conference on Computational Geometry, 2021

o

o

(a) State 1 with traversals.

o

o

(b) State 2 with traversals.

Figure 2: One of the first gadgets that we designed has two
‘tunnels’ (black arrows) and two states. (a) The top tunnel
is traversable in both directions since the turnstile can
spin freely, and the bottom tunnel is traversable only from
left-to-right since the turnstile can only spin counter-
clockwise. (b) The top tunnel is not traversable in either
direction since the turnstile is blocked, and the bottom
tunnel is traversable only from right-to-left since the
turnstile can only spin clockwise. It is not possible to move
between the two tunnels, and traversing the bottom tunnel
always causes the state to change.

1.2 Motion Planning Framework

Jayson Lynch’s PhD thesis [16] facilitates “proof by pic-
ture” hardness results. For example, Figure 2 shows one
of the first constructions developed by the authors (see
Section 5.2). Although it appears to do “something”
non-trivial, we were unable to integrate it into a stan-
dard hardness reduction. Miraculously, the framework
views this as a “non-crossing toggle lock (NTL)” gad-
get, and it su�ces as the key component of a PSPACE-
hardness proof. The framework1 was developed and ap-
plied across the following publications.

• A simplified framework was introduced in Compu-
tational Complexity of Motion Planning of a Robot
through Simple Gadgets at FUN 2018 by Demaine,
Grosof, Lynch, and Rudoy [7]. Its focus is on two
state gadgets and a single agent.

• A generalization appears in Toward a General
Complexity Theory of Motion Planning: Charac-
terizing Which Gadgets Make Games Hard by De-
maine, Hendrickson, and Lynch at ITCS 2020 [9].

• The framework has been applied in Trains, Games,
and Complexity: 0/1/2-Player Motion Planning
through Input/Output Gadgets by Ani, Demaine,
Hendrickson, and Lynch [3], and also in [2].

As indicated by the third item, the general framework
is quite broad. In many ways, it promises to be an
agent-based analog to the well-known constraint logic
framework developed by Hearn and Demaine [14, 15]. In
this paper, we are only concerned with 1-player puzzles,
so the simplified setting of [7] still holds particular value.

1Appendix A includes an auxiliary series of images that shows
how Figure 1a can be modeled using the framework.

1.3 Outline

In Section 2, we discuss rotation mechanisms, with a
focus on turnstile puzzles. In Sections 3–4, we intro-
duce concepts from the motion planning framework, and
show how they can be applied to turnstile puzzles. Sec-
tion 5 concludes with a summary, and open problems.
Throughout the paper, we include additional informa-
tion with an eye towards facilitating new research.

2 Rotation Mechanisms

Readers are likely familiar with several pushing mech-
anisms found in the literature, many of which can be
categorized using the Push[Push]-1/k/*-[X] classifi-
cation, as discussed in Demaine, Demaine, Ho↵mann,
and O’Rourke [6] (also see [8]). Some of these variations
have been inspired by video games, with Sokoban (1981)
and Pengo (1982) being two prominent examples. In
Sokoban, the player controls a warehouse worker who
can push a single box one grid cell at a time, and the
worker moves with the box. In Pengo, the player con-
trols a penguin who can push a single ice block, but in
this case, the block slides along the ice as far as possible,
and the penguin remains stationary.

Similarly, there are many rotation mechanisms found
in video games, but fewer of them have been studied
in the literature. We discuss five such mechanisms in
Section 2.1. Then in Section 2.2 we define our decision
problem, and prove that two special cases can be solved
e�ciently. Section 2.3 provides a survey of games and
puzzles that have used the turnstile mechanism.

2.1 Specific Mechanisms

Here we discuss five di↵erent rotation mechanisms found
in video games. The first mechanism was previously
studied using the motion planning framework [7]. To
the best of our knowledge, the remaining mechanisms
have not previously been considered.

2.1.1 k-Spinners

The Legend of Zelda: Oracle of Seasons and Oracle of
Ages were released for Nintendo’s Game Boy Color in
2001. Both games include a mechanism that is referred
to as a 4-spinner in [7]. The mechanism can be embed-
ded in a 3-by-3 grid of cells, with a pivot in the center,
walls in each corner, and open chambers in the remain-
ing four cells. The player interacts with the mecha-
nism by entering one the chambers. Once inside, the
4-spinner turns 90�, and then stops, so that the player
must exit the chamber. The direction of the turn de-
pends on its state. In its blue state, the spinner turns
counterclockwise, while in its red state, it turns clock-
wise. After the spinner has rotated, it changes state.

CCCG 2021, Halifax, Canada, August 10–12, 2021

Figure 3: 4-Spinner. Link enters the chamber on the left.
The spinner is blue, so it rotates 90�counterclockwise, and
Link must exit downward. Once Link exits, the spinner turns
red, indicating that its next rotation is 90�clockwise.

(a) Entering L-shape wall. (b) Exit Up. (c) Exit Right.

(d) Entering =-shape wall. (e) Exit Down. (f) Exit Up.

Figure 4: Rotating walls. (a) Circuit Dude enters an L-shape
wall from an open side, then (b)–(c) can exit through either
open side, and upon exiting, the walls rotate 90�clockwise
in-place. (d)–(f) The =-shape wall behaves similarly. Note:
Rotating walls appeared earlier in Bobby Carrot.

(a) Entering swivel (b) Exit " (c) Exit! (d) Exit # (e) Exit

Figure 5: Swivel Door. (a) Melinda enters the swivel through
an open side, then (b)–(c) exiting through an open side
leaves the swivel unchanged, or (d)–(e) exiting through a
wall causes the swivel to rotate 90�so that side opens.

Figure 3 illustrates a 4-spinner from the Moonlit Grotto
in the Oracle of Ages. A k-spinner generalizes a 4-
spinner by having k chambers.

Theorem 1 ([7]) Motion planning is PSPACE-
complete when restricted to k-spinners, for all k � 4.

2.1.2 Rotating Walls

Bobby Carrots is a series of early mobile puzzle games.
The first game was implemented in Java (J2ME) and
was available for various handsets in 2004, including
Nokia phones running Symbian. The most recent game,

(a) Approaching a T -turnstile. (b) Push Down. (c) Push Left.

(d) Rotate with no extra move. (e) Turning a thin T -turnstile.

Figure 6: Turnstiles. (a) Kwirk approaches an internal cor-
ner of a thick turnstile, then (b)–(c) turns it clockwise or
counterclockwise with a single push, with the trailing arm
moving Kwirk one extra cell. (d) Pushing the turnstile with
a trailing arm does not cause the extra move. (f) Thin turn-
stiles behave similarly, but without the extra move.

Bobby Carrot 5: Forever, was released on the Nintendo
Wii and iPhone2) and elsewhere in 2011. The series
includes a both L-shaped and =-shaped rotating walls.
These mechanisms occupy one grid cell, and a pair of
thin walls occupy two of the four gridlines inside its
perimeter. The player can enter or exit the cell through
either open side, and the cell rotates 90�once the player
exits it. The same mechanism has been used in other
games, including Circuit Dude, which launched on the
Arduboy in 2016, followed by iOS / Android / Steam /
Switch. Figure 4 illustrates the mechanism.

2.1.3 Swivel Doors

Chip’s Challenge was released for the Atari Lynx in
1989, and was popularized in Microsoft Entertainment
Pack 4 for Windows 3.1 in 1992. Its sequel, Chip’s
Challenge 2 (CC2), was developed in 1999, but was not
available to the public until its 2015 release on Steam.
The sequel added new mechanisms, including the swivel
door. The swivel door is visually identical to L-shaped
rotating walls, as they both involve two consecutive thin
walls around a single grid cell. Furthermore, the player
enters the mechanisms in the same way (i.e. through
one of the two openings). However, Chip and Melinda
can exit a swivel door in any of the four cardinal direc-
tions. If they exit through either of the two openings,
then the swivel door does not change. Otherwise, if
they exit through one of the walls, then the cell rotates
90�. More specifically, the rotation is chosen so that the
exited side of the mechanism becomes open. In other
words, the mechanism behaves as if the walls are slid out
of the way upon exit. Figure 5 provides an illustration.

2Due to Apple’s iconoclastic update policies, this game, and
so many other classics, are no longer available on their platforms.

33rd Canadian Conference on Computational Geometry, 2021

2.1.4 Thick Turnstiles

Puzzle Boy (1989) was developed for the Game Boy
by Atlus, and localized as Kwirk (1990). The game
uses thick turnstiles, which have a central pivot that oc-
cupies a single cell, and arms that occupy at most one
cell radiating outward in each direction, producing the

, , , , and (and their rotations). Each
mechanism can rotate 90�around its pivot, either clock-
wise or counterclockwise, when the player pushes one of
its arms. If a turnstile can rotate, then the player will
also move in the direction of the push. Furthermore, if
an arm is following behind the player, and would occupy
their cell after the rotation, then the player is pushed
one extra cell by the trailing arm. A turnstile cannot
be rotated if a wall, or another turnstile, occupies a cell
that the arm would need to rotate through. Figure 6
shows a thick T -shaped turnstile.

2.1.5 Thin Turnstiles

Lady Bug is a maze chase game released in arcades in
1981 by Universal, and later ported to home consoles.
The game features thin turnstiles, which have a central
pivot that occupies a grid point, and arms that radiate
out along single grid lines, in the shape (or its rota-
tion). In Pokemon Ruby and Sapphire, the mecha-
nism was generalized to include additional shapes. The
mechanism behaves similarly to thick turnstiles. How-
ever, the player is never pushed an extra cell by a trail-
ing arm, since the arms occupy grid lines instead of cells.
Figure 6 shows a thin T -shaped turnstile.

When considering multiple thin turnstiles, it is natu-
ral to wonder if overlapping arms are allowed. In other
words, can the arms of two turnstiles occupy the same
grid line?3 This question is not answered by the Poke-
mon games, since the turnstiles are placed in ways that
prevent this possibility. We take the position that over-
lapping arms are never allowed. Thus, a thin turnstile
cannot be given a particular rotation if that rotation
would result in an overlap. For the same reason, we do
not mix thin and thick turnstiles in the same puzzles.

2.2 Turnstile Decision Problem

The Turnstile decision problem takes as input a level
L, which is a grid in which the cells, points, and lines
form walls and well-formed turnstiles (either thick or
thin), with an initial position and exit position. If the
player can move from the initial position to the exit by
a sequence of moves, then the output is yes. The proof
of Proposition 2 appears in Appendix B.

Proposition 2 Turnstile is in PSPACE.

3This is not a concern with rotating walls or swivel doors, since
their thin obstacles are internal to a specific grid cell.

(a) A level with turnstiles.

B A

(b) Graph corresponding to (a).

Figure 7: When restricted to , the Turnstile decision
problem can be solved using undirected s-t connectivity.

We will prove that Turnstile is PSPACE-hard, and
hence PSPACE-complete. In fact, we’ll see that Fig-
ure 2 guarantees this. Therefore, we’ll focus on de-
termining whether Turnstile remains PSPACE-hard
(and PSPACE-complete) when the turnstile types are
restricted. Let TurnstileS denote the restriction of
Turnstile to levels that only use turnstiles from the
set S . For example, we now prove that the decision
problem can be solved e�ciently when restricted to
or . Figure 7 illustrates the proof of Proposition 3.

Proposition 3 TurnstileS for S = { } is decid-
able in polynomial-time.

Proof. We’ll show that the decision problem can be
transformed into an undirected s-t connectivity problem
in polynomial-time.

First observe that the turnstile is unique amongst
the thick turnstiles in that it has only one orientation.
In other words, rotating a turnstile does not change
which cells are occupied. Therefore, when S = { },
we can partition the turnstiles into two classes: those
that can always rotate, and those that can never rotate.
Furthermore, it is easy to identify those in the latter
category, since they are precisely those in which one of
the four cells that are diagonally-adjacent to its pivot is
occupied by a wall or the arm of another turnstile.

We create a graph associated with the level as follows.
Begin with a grid graph with points associated with
cells of the grid that are either empty, along with the
initial the exit positions. Now we consider each turnstile
that can rotate. Given such a turnstile whose pivot
occupies position (i , j) of the grid, we add edges of the
form (a, b) where a 2 {(i + 1, j + 1), (i � 1, j � 1)}
and b 2 {(i � 1, j + 1), (i + 1, j � 1)}. In other words,
we add a square that connects the empty cells that are
diagonally-adjacent to the pivot. The creation of this
graph can be done in polynomial-time.

Finally, we check if the start and exit positions are
connected, which can be done in deterministic log-space.
Hence, the overall algorithm takes polynomial-time. ⇤

The following proposition can be proven similarly.

Proposition 4 TurnstileS for S = { } is decid-
able in deterministic log-space.

CCCG 2021, Halifax, Canada, August 10–12, 2021

2.3 History

Tables 1–2 list puzzles and games that use thick or thin
turnstiles, either as a primary or secondary mechanism,
respectively. Our results apply to all of the entries, ex-
cept for Lady Bug and Drelbs, which are action games
rather than puzzle games, and the physical puzzle Turn-
stiles which is a multi-player game.

3 Gadgets in General

We begin our presentation of the motion planning
framework by considering gadgets and their properties.
Our presentation focuses on sets and functions, and we
use the graphical styles from both the initial framework
[7] and the generalized framework [9]. We begin by in-
troducing the simplest gadgets: hallways and 1-toggles.

3.1 Branching Hallways

A branching hallway simply connects three locations.
Since there is no gravity in Turnstile, it is easy to
implement these gadgets.

Proposition 5 Branching hallways can be imple-
mented in Turnstile without turnstiles.

Proof. The branching hallway gadget from [7] is shown
below on the left, with an implementation on the right.

Branching hallway. Implementation in Turnstile.

⇤

3.2 1-Toggle

A 1-toggle connects two locations, A and B, via a dy-
namic path known as a tunnel. In state 1, it possible
to travel from A to B, while in state 2, it is possible
to travel from B to A. Furthermore, the gadget toggles
its state whenever one of these traversals in completed.
The 1-toggle is illustrated in several ways in Figure 8.

• Figure 8a is the graphical style from [7], in which a
single diagram represents two states. In this type of
diagram, a directed arrow represents a toggle, and
traversing it causes its direction to switch.

• Figure 8b is the graphical style from [9], in which
both states are shown. One can think of the
rounded rectangles as being drawn on top of each
other, since the left side of both rectangles refer
to the same location, as do the right sides of both

Release Title Developer Platform(s) Screenshot

1989

1990

Puzzle Boy

Kwirk

Atlus Game Boy

1989 Maze-kun

(Mr. Maze)

Telenet

Japan

NEC PC-8800,

MSX 2

1990 Puzzle Boys Atlus
Famicom Disk

System

1991 Puzzle Boy
Telenet

Japan

NEC PC

Engine

1991

1992

Puzzle Boy 2

Amazing Tater

Atlus Game Boy

1998 Kwirk
† Ludvig

Strigeus

TI-89 / TI-90

Calculator

2003
Shin Megami

Tensei: Nocture
Atlus PlayStation 2

2003
Devil Children:

Puzzle de Call!
Atlus

Game Boy

Advance

2008
Puzzle Boy

Flash
† Blawars Web browser

2013
Kwirk Free

†

Kwirk 2
†

Galiksoft

Android /

Amazon App

Store

2020 Turner
† Pico

Beast
Pico-8

Table 1: Video games using thick turnstiles. †
clone

Release Title Developer Platform(s) Screenshot

1981 Lady Bug Universal
Arcade

Intellivision

Colecovision

1983 Lady Tut Programe
Apple][

Commodore 64

1983 Drelbs
Synapse

Software

Atari 8-bit

Apple][

Commodore 64

2002

2003

Pokemon Ruby

and Sapphire

Game

Freak

Game Boy

Advance

2004

2005

Pokemon

Emerald

Game

Freak

Game Boy

Advance

2012 Turnstile ThinkFun Physical puzzle

2014

Pokemon Omega

Ruby and Alpha

Sapphire

Game

Freak
Nintendo 3DS

2017
Super Mario

Odyssey
Nintendo

Nintendo

Switch

Table 2: Puzzles and games using thin turnstiles.

33rd Canadian Conference on Computational Geometry, 2021

(a) Graphical style from [7].

1
2

2
1

(b) Graphical style from [9].

o

A
o

B

(c) Implementation in Kwirk.
Left: State 1. Right: State 2.

1
2

2
1A B

(d) Graphical style from [9] with
location labels.

Figure 8: A 1-Toggle gadget in several graphical styles, and
implemented with one . In state 1, the gadget’s only
traversal is A ! B (left to right). In state 2, the gadget’s
only traversal is B ! A (right to left). The state changes if
and only if a traversal occurs.

rectangles. In this style, the arrows are labeled
with the state number that the gadget changes to
after that particular traversal. The dotted line il-
lustrates that the tunnel is reversible (i.e. once a
traversal is complete, it can be done in reverse, and
the gadget will return to its previous state).

• Figure 8c illustrates how a 1-toggle can be imple-
mented with a single turnstile. The two states can
again be interpreted as being drawn on top of each
other, and in this case we have explicitly labeled
the left location as A, and the right location as B.

• Figure 8d provides our slight modification of the
graphical style from [9], which is the result of stu-
dent feedback from the second-last author’s course
on the theory of computation. Specifically, we add
explicit location labels, and we shorten the dot-
ted line between the states. The first modification
makes it easier to discuss the gadget, while the sec-
ond is avoid a common misunderstanding. When
an A to B traversal is conducted in state 1, the
gadget toggles to state 2, and the agent ends in lo-
cation B. The agent does not magically transport
back to location A, as some have interpreted the
dotted line to indicate.

3.3 Definition of a Gadget

Now we formally define a gadget. A gadget is a triple
g = (n,L,T) whose components are defined below,
where [x] denotes {1, 2, . . . , x}.

• n is the finite number of states.

• L is a finite ground set of m locations.

• T ✓ [n] ⇥ L ⇥ [n] ⇥ L is a set of traversals. An
individual traversal is a 4-tuple (s1, `1, s2, `2) 2 T ,
where s1 is the current state, `1 is the entry location,
s2 is next state, and `2 is the exit location.

The reader may wonder why the definition includes
a set of locations, rather than the number of locations.
The reason is that sets allow for gadgets to share, or
not share, locations. For example, we could have two
instances of a 1-toggle, the first with states L1 = {A,B},
and the second with states L2 = {B ,C}.

In later sections, we will be considering systems of
gadgets, and how they are connected to each other. In
this context, planarity is a consideration, and we need to
know the cyclic order of the locations around a gadget.
This leads to the following definition.

A planar gadget is a pair p = (g ,⇡) where

• g = (n,L,T) is a gadget.

• ⇡ is a cyclic order of the gadget’s locations. (In
other words, ⇡ is a necklace over L.)

4 Gadget Types

At the end of Section 3, we formally defined gadgets.
Now we define several specific types of (planar) gadgets,
and show how to implement them with turnstiles.

As a simple example, we can formally define a 1-toggle
as g1T = (n,L,T), with n = 2 states, two locations
L = {A,B}, and two transitions

T = {(1,A, 2,B), (2,B , 1,A)}.

There are no planar variations of this gadget, since at
least four locations are required to have multiple cyclic
orders of the location set.

When implementing a gadget type, it is important
to think of the type as a template, rather than a sin-
gle gadget. More specifically, an implementation of a
gadget must have the property that separate copies are
independent in the sense that they do not share any
state. For example, if a video game has a button that
acts globally (i.e. opens or toggles all doors), then it
cannot be used in an implementation. This is will not
be an issue in Turnstile since each turnstile has its
own orientation. For example, if we make two copies of
the 1-toggle implementation in Figure 8c, then they will
act independently of each other.

4.1 Noncrossing Toggle Lock (NTL)

A toggle-lock (TL) is a gadget gTL = (n,L,T) with
n = 2 states, four locations L = {A,B ,C ,D}, and the
following set of four transitions T :

{(1,A, 1,B), (1,B , 1,A), (1,C , 2,D), (2,D , 1,C}. (1)

In other words, a toggle lock has two tunnels, A-B
and C-D. The first tunnel is traversable in both direc-
tions in state 1, and is not traversable in state 2, while
the second tunnel is always traversable in one-direction.

CCCG 2021, Halifax, Canada, August 10–12, 2021

(a) NTL drawing from [7].

A B
2 1

1 2

C D

(b) NTL drawing from [9].

Figure 9: Noncrossing toggle lock (NTL) gadget.

o

o

A B

C D
(a) State 1 of NTL.

o

o

A B

C D
(b) State 2 of NTL.

Figure 10: Implementing a noncrossing toggle-lock.

Traversing the second tunnel toggles the gadget’s state,
which changes the traversability of both tunnels. The
first tunnel will be referred to as a lock in [7].
We are particularly interested in the one of the planar

toggle-locks.

• A noncrossing toggle-lock (NTL) is a pair p =
(gTL,⇡) with ⇡n = ABDC .

The ⇡n order implies that the two tunnels do not cross
each other. The NTL gadget is illustrated in Figure 9.
The first non-trivial gadget that the authors con-

structed happened to be a noncrossing toggle-lock, and
Figure 2 is reproduced in Figure 10. Fortuitously, the
simplified motion planning framework proves that the
ability to implement NTL gadgets (and branching hall-
ways) is su�cient for establishing PSPACE-hardness.
One detail that we mention

Theorem 6 Turnstile is PSPACE-complete.

Proof. The decision problem is in PSPACE by Propo-
sition 2, and branching hallway can be implemented in
Turnstile by Proposition 5. Figure 2 implements a
noncrossing toggle-lock. Therefore, the result follows
from Corollary 5.2 of [7]. ⇤

4.2 Crossing 2-Toggle (C2T)

A 2-toggle (2T) is a gadget g2T = (n,L,T) with n = 2
states, four locations L = {A,B ,C ,D}, and the follow-
ing set of four transitions:

T = {(1,A, 2,B), (1,C , 2,D), (2,B , 1,A), (2,D , 1,C}.

In other words, a 2-toggle has two tunnels, A-B and
C-D, which are always one-directional, and traversing
either either tunnel toggles the direction of both tunnels.

We are particularly interested in the one of the planar
2-toggles.

• A crossing 2-toggle (C2T) is a pair p = (g2T ,⇡c)
with ⇡c = ADBC .

The order ⇡c implies that the two cross each other. The
C2T gadget is illustrated in Figure 11.

Although we did not have a name for it at the time,
the second non-trivial gadget that the authors con-
structed was a crossing 2-toggle using a pair of turn-
stiles. Later we added thin turnstiles to our investiga-
tion, and it was possible to mimic the construction with
thick turnstiles using a pair of turnstiles. In both
cases, the turnstiles are positioned so that they each
have two possible orientations, and a single enclosed
cell between them. During a traversal, the player ro-
tates one of the turnstiles to enter the enclosed cell, then
must either retreat, or turn the other turnstile to con-
tinue along the direction that the entered from. Figures
12 and 13 illustrate the two constructions. Amazingly,
the simplified motion planning framework again proves
that these images are central to establishing PSPACE-
hardness.

Theorem 7 Turnstile is PSPACE-complete when
restricted to thick T-shaped or thin T-shaped turn-
stiles. That is, TurnstileS is PSPACE-complete when
S = { } or S = { }.

Proof. The decision problem is in PSPACE by Propo-
sition 2, and branching hallway can be implemented in
Turnstile by Proposition 5. Figures 12 and 13 im-
plement a crossing 2-toggle S = { } and S = { },
respectively. Therefore, the result follows from Corol-
lary 5.2 of [7]. ⇤

4.3 Locking 2-Toggles (L2T)

A locking 2-toggle (L2T) is a gadget gL2T = (n,L,T)
with n = 3 states, four locations L = {A,B ,C ,D}, and
the following set of four transitions:

T = {(1,B , 3,A), (2,D , 3,C), (3,A, 1,B), (3,C , 2,D}.

In other words, a locking 2-toggle has two tunnels, A-B
and C-D, which are always traversable in at most one
direction. In state 3, both tunnels are traversable, and
traversing the first tunnel changes the gadget to state 1,
while traversing the second tunnel changes the gadget
to state 2. In state 1, only the first tunnel is traversable
(in the opposite direction), while only the second tunnel
is traversable (in the opposite direction) in state 2.

We consider two planar locking 2-toggles.

• A parallel locking 2-toggle (PL2T) is a pair p =
(gL2T ,⇡p) with ⇡p = ACDB .

33rd Canadian Conference on Computational Geometry, 2021

(a) C2T drawing from [7].

1

2

2

1

1C B
A D

2

(b) C2T drawing from [9].

Figure 11: Crossing 2-toggle (C2T) gadget drawing..

o

o
A B

C

D
(a) State 1 of C2T

o

o
A B

C

D
(b) State 2 of C2T

Figure 12: Crossing 2-toggle using .

A B

C

D
(a) State 1 of C2T

A B

C

D
(b) State 2 of C2T

Figure 13: Crossing 2-toggle using .

• An antiparallel locking 2-toggle (AL2T) is a pair
p = (gL2T ,⇡a) with ⇡a = ADCB .

Both orders implies that the two tunnels do cross each.
In the first case, the traversal directions in state 3 are
the same, while in the second case, the traversal di-
rections in state 3 are opposite. The PL2T and AL2T
gadgets are illustrated in Figure 14 and 16, respectively.
Since the L2T gadget has three states, the simplified
graphical style in [7] cannot be used.

We were able to implement the PL2T gadget in one
way, and the AL2T gadget in three ways. In each case,
the general idea is to place two 1-toggles together in such
a way that they interfere with the other 1-toggle in one
or the two states. Figures 15 illustrates our construction
of PL2T, and Figures 17, 18, and 19 illustrate our con-
structions of AL2T. The generalized motion planning
framework again proves that these images are central
to establishing PSPACE-hardness.

Theorem 8 Turnstile is PSPACE-complete when
restricted to thick or thin L-shaped or 1-shaped turn-
stiles. That is, TurnstileS is PSPACE-complete when
S = { } or S = { } or S = { } or S = { }.

31 2

1
3

2
3

A C

B D
Figure 14: Parallel locking 2-toggle (PL2T) gadget drawing.

o o

o

o

D

A

CB

(a) State 1 of PL2T

o o

o

o

D

A

CB

(b) State 3 of PL2T

o o

o

o

D

A

CB

(c) State 2 of PL2T

Figure 15: Parallel locking 2-toggle using .

Proof. The decision problem is in PSPACE by Propo-
sition 2. Figures 15, 18, 17, and 19, implement locking
2-toggles with S = { } or S = { } or S = { } or
S = { }, respectively. Therefore, the result follows
from Theorem 10 of [9]. ⇤

5 Summary and Future Work

We have shown that motion planning through turnstiles
is PSPACE-complete for three shapes of turnstiles, re-
gardless of whether they are thick or thin. However, the
decision problem is solvable in polynomial-time when
restricted to +-shaped turnstiles that are thick or thin.
The unresolved singleton case is i -shaped turnstiles (i.e.

and); the pairings of +-shaped and i -shaped is
also open. These complexity results are summarized in
Figure 20 for thick turnstiles, and the same results hold
for thin turnstiles.

5.1 Future Work

One can classify the turnstiles that we have considered
in this article as short turnstiles, in the sense that the
arms have length one. Considering long turnstiles is a
natural next step, and these mechanisms would better
model the Pokemon series of games (see Figure 1b).

Rotating walls and swivel doors from Section 2 also
provide open problems. Another variation involves
ratchet rotation, in which turnstiles can only turn one
direction (i.e. clockwise or counterclockwise).

CCCG 2021, Halifax, Canada, August 10–12, 2021

3 1
2

2 3

A

C

D

1
3

B
Figure 16: Antiparallel locking 2-toggle (AL2T) gadget.

o

o

D

C

A

B
(a) State 1 of AL2T

o

o

D

C

A

B
(b) State 3 of AL2T

o

o

D

C

A

B
(c) State 2 of AL2T

Figure 17: Antiparallel locking 2-toggle using .

D

C

A

B
(a) State 1 of AL2T

D

C

A

B
(b) State 3 of AL2T

D

C

A

B
(c) State 2 of AL2T

Figure 18: Antiparallel locking 2-toggle using .

C

A

DB

(a) State 1 of AL2T

C

A

DB

(b) State 3 of AL2T

C

A

DB

(c) State 2 of AL2T

Figure 19: Antiparallel locking 2-toggle using .

∅

Figure 20: A summary of computational complextiy
results for the TurnstileS decision problem for all
S ✓ { , , , , }. The subsets in red nodes are
PSPACE-complete, and the subsets in green nodes are
in P. The two subsets in white nodes, { } and { , },
remain open.

5.2 Acknowledgements

The initial work on this project was conducted at the
32nd Bellairs Winter Workshop on Computational Ge-
ometry in early 2017. We thank participant Mikhail
Rudoy for pointing us towards the motion planning
framework, which was still in its early stages of devel-
opment at the time. We also thank Erik Demaine and
Jayson Lynch for several helpful discussions.

References

[1] J. Ani, S. Asif, E. D. Demaine, Y. Diomidov, D. H. Hen-
drickson, J. Lynch, S. Sche✏er, and A. Suhl. Pspace-
completeness of pulling blocks to reach a goal. J. Inf.
Process., 28:929–941, 2020.

[2] J. Ani, J. Bosboom, E. D. Demaine, Y. Diomidov, D. H.
Hendrickson, and J. Lynch. Walking through doors is
hard, even without staircases: Proving pspace-hardness
via planar assemblies of door gadgets. In M. Farach-
Colton, G. Prencipe, and R. Uehara, editors, 10th In-
ternational Conference on Fun with Algorithms, FUN
2021, May 30 to June 1, 2021, Favignana Island, Sicily,
Italy, volume 157 of LIPIcs, pages 3:1–3:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[3] J. Ani, E. D. Demaine, D. H. Hendrickson, and
J. Lynch. Trains, games, and complexity: 0/1/2-player
motion planning through input/output gadgets. CoRR,
abs/2005.03192, 2020.

[4] A. Barr, C. Chang, and A. Williams. Block Dude puz-
zles are NP-hard (and the rugs really tie the reductions
together). In Proceedings of the 33rd Canadian Confer-
ence on Computational Geometry, Dalhousie Univer-
sity, Halifax, Canada, August 10-12, 2021, 2021.

[5] J. Culberson. Sokoban is PSPACE-complete. In In
Proceedings of the 1st International Conference on Fun
with Algorithm, pages 65–76, 1998.

33rd Canadian Conference on Computational Geometry, 2021

[6] E. Demaine, M. Demaine, M. Ho↵mann, and
J. O’Rourke. Pushing blocks is hard. Computational
Geometry, 26:21–36, 2003.

[7] E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy.
Computational complexity of motion planning of a
robot through simple gadgets. In H. Ito, S. Leonardi,
L. Pagli, and G. Prencipe, editors, 9th International
Conference on Fun with Algorithms, FUN 2018, June
13-15, 2018, La Maddalena, Italy, volume 100 of
LIPIcs, pages 18:1–18:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[8] E. D. Demaine, R. A. Hearn, and M. Ho↵mann.
Push-2-f is PSPACE-complete. In Proceedings of the
14th Canadian Conference on Computational Geome-
try, University of Lethbridge, Alberta, Canada, August
12-14, 2002, pages 31–35, 2002.

[9] E. D. Demaine, D. H. Hendrickson, and J. Lynch. To-
ward a general complexity theory of motion planning:
Characterizing which gadgets make games hard. In
T. Vidick, editor, 11th Innovations in Theoretical Com-
puter Science Conference, ITCS 2020, January 12-14,
2020, Seattle, Washington, USA, volume 151 of LIPIcs,
pages 62:1–62:42. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[10] D. Dor and U. Zwick. Sokoban and other motion plan-
ning problems. Computational Geometry, 13(4):215 –
228, 1999.

[11] M. Fryers and M. T. Greene. Sokoban, 1995.

[12] A. Greenblatt, J. Kopinsky, B. North, M. Tyrrell, and
A. Williams. MazezaM levels with exponentially long
solutions. In 20th Japan Conference on Discrete and
Computational Geometry, Graphs, and Games (JCD-
CGGG 2017), pages 109–110, 2017.

[13] A. Greenblatt and A. Williams. MazezaM –
puzzle game. https://community.arduboy.com/t/
mazezam-puzzle-game/3723/25.

[14] R. A. Hearn and E. D. Demaine. The nondeterministic
constraint logic model of computation: Reductions and
applications. In P. Widmayer, F. T. Ruiz, R. M. Bueno,
M. Hennessy, S. J. Eidenbenz, and R. Conejo, editors,
Automata, Languages and Programming, 29th Interna-
tional Colloquium, ICALP 2002, Malaga, Spain, July
8-13, 2002, Proceedings, volume 2380 of Lecture Notes
in Computer Science, pages 401–413. Springer, 2002.

[15] R. A. Hearn and E. D. Demaine. Games, Puzzles, and
Computation. A K Peters/CRC Press, 1st edition, 2009.

[16] J. R. Lynch. A framework for proving the
computational intractability of motion plan-
ning problems. PhD thesis, MIT, 9 2020.
https://dspace.mit.edu/handle/1721.1/129205.

[17] B. North. Simpler exponential MazezaM
level family. https://bennorth.github.io/
simpler-exponential-mazezam/index.html.

Appendix

We conclude with several notes, which may be helpful for
some readers.

A Modeling Level 1

Figures 21–23 shows how Level 1 in Kwirk can be modeled
using gadgets and the motion planning framework. Note
that the two gadgets are simply rotations of each other.

(a) Locations. (b) State 1. (c) State 2. (d) State 3. (e) State 4.

(f) Locations. (g) State 1. (h) State 2. (i) State 3. (j) State 4.

Figure 21: (a)–(e) Gadget g1 = (n1,L1,T1) with n1 = 4
states, location set L1 = {A,B ,C}, and traversal set T1 =
{(1,A, 2,B), (1,A, 3,B), (1,A, 3,C), (1,A, 4,C), . . .}. (f)–
(j) Gadget g2 = (4,L2,T2) with L2 = {X ,Y ,Z} and T2 =
{(1,X , 2,Y), (1,X , 3,Y), (1,X , 3,Z), (1,X , 4,Z), . . .}.

Figure 22: Modeling Level 1 from Figure 1a using the system
of gadgets S = (G,C), with gadget set G = {g1, g2}, and
connections C = {{B ,Z}, {C ,Y }}. Note that gadget g1 is
on the right.

(a) System state (a, s1, s2) with agent location a = C , and gadget
states s1 = 3 and s2 = 4.

(b) System state (a, s1, s2) with agent location a = B , and gadget
states s1 = 2 and s2 = 4.

Figure 23: (a)–(b) A traversal move in gadget g1 in system S .
The traversal is (3,C , 2,B) 2 T1, and the agent can move
right, down, down, right, left, left, left to make this traversal.

https://community.arduboy.com/t/mazezam-puzzle-game/3723/25
https://community.arduboy.com/t/mazezam-puzzle-game/3723/25
https://bennorth.github.io/simpler-exponential-mazezam/index.html
https://bennorth.github.io/simpler-exponential-mazezam/index.html

CCCG 2021, Halifax, Canada, August 10–12, 2021

B Membership in PSPACE

The proof of Proposition 2 uses standard techniques and
appears below.

Proof. We will prove that Turnstile is in NPSPACE,
which establishes the result by Savitch’s theorem. For sim-
plicity, our argument only considers levels with thick turn-
stiles; thin turnstiles can be handled by considering grid lines
as well as grid cells.

Consider an instance of the problem Turnstile(L) in
which L has a total of n grid cells. The size of the input is
then O(n) since each cell can be occupied by a small num-
ber of di↵erent game elements, hence, each cell contributes
a small number of bits to the level’s encoding.

Our algorithm starts in the initial state of the level, and
then non-deterministically makes moves (i.e. up, down, left,
right) until the player reaches the exit position and the algo-
rithm returns yes, or we exceed a pre-determined maximum
number of moves. The maximum number of moves that we
allow is chosen to be at least the number of di↵erent states
that the level can have, since if there is a solution, then there
is a solution that does not repeat any states. The state of
a level consists of the position of the player’s token, and
the orientation of each turnstile. Each turnstile can have at
most 4 orientations, and the number of turnstiles is at most
n. Thus, the number of states is at most n · 4n . To imple-
ment our algorithm, we need to store the current state of the
level, and the move counter. The state of the level requires
O(n)-bits, and the move counter requires log n ·4n = 2n log n
bits. Therefore, our algorithm uses O(n log n) nondetermin-
stic space. ⇤

C Explicit Exponential Level Construction

There are two distinct benefits to constructing simple levels
that require an exponential number of moves to solve.

1. It illustrates that the simplest certificate (i.e. the se-
quence of moves) is not su�cient for establishing mem-
bership in NP. For example, see [12, 17] for the puzzle
game MazezaM.

2. Game developers may wish to include such a level in
their game. For example, this is true for MazezaM on
the Arduboy [13].

For these reasons, a lexicographic 4-bit binary counter
using crossing 2-toggles (C2T) is given in Figure 25, along
with an implementation in Kwirk using turnstiles.

SG

(a) A 4-bit counter in its initial state b4b3b2b1 = 0000.

SG

(b) State 0000. The highlighted loop complements b1.

SG

(c) State 0001. The highlighted loop complements b2b1.

SG

(d) State 0010. The highlighted loop complements b1.

SG

(e) State 0011. The highlighted loop complements b3b2b1.

...

SG

(f) State 1111. Reaching the goal via the highlighted path.

Figure 24: Binary counting with motion planning gad-
gets. (a) A 4-bit counter using crossing 2-toggles. (b)–(f)
Each image begins with the player at the start location S ,
and the counter state is a binary string b4b3b2b1 based on
the state of each gadget. The player must traverse states
0000, 0001, . . . , 1111 to reach the goal location G.

SG

(a) The 4-bit counter drawn with branching hallways as per [7].

C4

o
G A4 B4

o

D4

C3

o
A3 B3

o

D3

C2

o
A2 B2

o

D2

C1

o
A1 B1 X S

o

D1

(b) A 4-bit counter in Kwirk.

Figure 25: (a) The 4-bit counter from Figure 24 implemented
in Kwirk using the crossing 2-toggle with S = { }. It
follows the same design, but with (a) branching hallways, as
in the style of [7].

View publication stats

https://www.researchgate.net/publication/352934597

	Introduction
	Pushing, Pulling, Sliding, …and Rotating
	Motion Planning Framework
	Outline

	Rotation Mechanisms
	Specific Mechanisms
	k-Spinners
	Rotating Walls
	Swivel Doors
	Thick Turnstiles
	Thin Turnstiles

	Turnstile Decision Problem
	History

	Gadgets in General
	Branching Hallways
	1-Toggle
	Definition of a Gadget

	Gadget Types
	Noncrossing Toggle Lock (NTL)
	Crossing 2-Toggle (C2T)
	Locking 2-Toggles (L2T)

	Summary and Future Work
	Future Work
	Acknowledgements
	Modeling Level 1
	Membership in PSPACE
	Explicit Exponential Level Construction

