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Université Libre de Bruxelles, Brussels, Belgium

awinslow@ulb.ac.be

Abstract

The author gives a brief historical tour of theoretical tile self-
assembly via chronological sequence of reports on selected topics in
the field. The goal is to provide context and motivation for the these
results and the field more broadly.

Introduction. This tour covers only a subset of the research topics
in theoretical tile self-assembly, listed chronologically according to the most
intense interval of study. It is intended for readers who are familiar with
the basics of the field and wish to obtain a better understanding of how the
multitude of models, problems, and results relate. As such, it is neither a
survey nor an introduction; for these, the reader is referred to the excellent
works of Doty [18], Patitz [37], Woods [50], and Winfree [47]. Moreover, it
does not cover work in experimental DNA tile self-assembly.

The aTAM of Winfree (1990s). It is common for work on theoretical
tile self-assembly (hereafter tile assembly), to begin “In his Ph.D. thesis,
Winfree [47] introduced the abstract tile assembly model (aTAM) . . . ”. The
ubiquity of this opener matches the importance this work plays in the field:
it is the point of conception, and nearly 20 years later, its reading connotes
initiation to the area. Moreover, the sustained popularity of tile assembly is
due in large part to the elegance and hidden deoth of this original model.
Such intricacy is perhaps most crystallized in a simple yet devious question:
is universal computation possible in the aTAM at temperature 1?

As with any research, the conception of the aTAM and corresponding
experimental implementations were did not occur in isolation. Several other
models of (linear) DNA-based computation also introduced around this time,
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including the filtering-based models of Adleman [2] and Beaver [8] and the
splicing systems of Pâun, Kari, Yokomori, and others [27, 39, 51].

Benchmark Problems (2000-2004). Beyond defining the aTAM, the
Winfree thesis also contains a proof of the computational universality of the
aTAM at temperature 2. This result established algorithmic universality,
but not the ability to assemble shapes efficiently, i.e., using systems of few
tile types. Rothemund and Winfree [41] soon established this, achieving
n×n square assembly with O(log n) tile types. Following this work, the twin
capabilities of universal computation and efficient square assembly became
the de facto benchmarks for powerful models of tile assembly.1

Followup work by Adleman et al. [4, 13] closed the small gaps in opti-
mality left by the construction Rothemund and Winfree and introduced a
new metric of efficiency: (expected) assembly time. This metric was ported
from simultaneous work on the dynamics of linear assemblies by Adleman
et al. [3, 6] and considered in other models later [10]. Shortly after, efficient
assembly of general (non-square) shapes was proved NP-complete by Adle-
man et al. [5], while Soloveichik and Winfree [45] established the geometric
universality [46] of the aTAM: the construction of all shapes efficiently (if
scaling is permitted).

Even beyond techniques for information encoding and construction anal-
ysis introduced in [4, 45], perhaps the most persistent single contribution of
work in this era was implicit conjecture in [41] that the aTAM at tempera-
ture 1 is not capable of (universal) computation, based on related conjectured
lower bound of 2n− 1 tiles to assemble n× n squares.

Error-Prone Models (2002-2011). Some of the earliest variations
on the aTAM were those concerned with the design of systems robust to
various errors in the assembly process. Such errors included incorrect tile
attachments [11, 12, 42, 44, 49], assembly “damage” via partial deletion [44,
48], temperature fluctuations [24], and unseeded growth [43]. In an ironic
turn, the adversarial “seedless” growth addressed by Schulman et al. [43] was
later used to achieve efficient constructions impossible with seeded growth [9].
The collection of error-prone models and results demonstrated that even
small changes to aTAM yield rich new ideas. New model variations remain
the largest catalyst of new work in tile assembly.

The Temperature-1 Problem (2005-ongoing). The Temperature-

1As discussed later, these simple challenges ultimately proved insufficient detailed for
distinguishing between some powerful but unequal models.
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1 Problem is the most notorious open problem in tile assembly: is the
temperature-1 aTAM computationally universal? The widely conjectured
answer is a resounding “Obviously not!”2, but the problem has resisted nearly
all progress, permitting only negative results that use either stronger conjec-
tures [33, 34], weaker models [32, 40], or the assumption of other plausible
conjectures [25].

One primary difficulty is even obtaining a precise formal statement of
what constitutes “computation” in tile assembly. The second is developing
a proof approach that passes the “3D test”: the proof must break in 3D,
implied by the result of Cook, Fu, and Schweller [14].

Computational Universality via Weak Cooperation (2007-2012).
The computationally universality of the aTAM at temperature 2 and the tem-
perature 1 problem beg the question of whether computational universality
can be achieved by adding other features to the temperature-1 aTAM. Sev-
eral variations of the temperature-1 aTAM were considered for which the
answer proved to be “Yes”. These included models using the third dimen-
sion [14], negative-strength glues [21, 38], non-square tiles [26, 29], and tiles
with triggerable “signals” [30, 36]. These models commonly exploit either
“weak cooperation” in the form of repelling forces or the ability to “jump
over walls”.

Handedness (2008-2014) In addition to models adding features to the
temperature-1 aTAM, other modifications to the aTAM were under consid-
eration. In particular, the elimination of the seed was considered in the
hierarchical or two-handed (2HAM) tile assembly models, hinted at in sev-
eral settings [7, 15, 31] before reaching the formulation used currently [1, 24].
Surprisingly, the removal of the seed causes numerous unexpected effects,
including increased power [9], runaway growth [19, 20], and no improvement
in assembly time [10].

Intrinsic Universality (2010-present). By 2010, the introduction of
new tile assembly models was occurring regularly. As previously described,
many of these models obtained computational universality, but through al-
ternative “weakly cooperative” means. With a few exceptions where direct
simulation was possible (e.g., 2HAM simulation of aTAM [9]), the under-
standing of the relative power of these models was unsatisfyingly coarse:
models are either computationally universal or not.

Adapting definitions of a geometric notion of simulation from cellular au-

2Usually accompanied by an exaggerated shoulder shrug and waving, upturned palms.
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tomata (see [28, 35]), Doty et al. [22, 23] established that the temperature-
2 aTAM is intrinsic universal for all aTAM systems: there exists a sin-
gle temperature-2 tile set that simulates the behavior of any aTAM system
(when provided with a seed assembly encoding the system). Subsequent
work used this new comparative metric to prove positive and negative intrin-
sic universality results for variations of the 2HAM, aTAM, and polygonal tile
model [16, 17, 29, 34]. In progress towards the Temperature-1 Problem, the
temperature-1 aTAM was proved not intrinsically universal for the higher
temperature aTAM [34], failing to match temperature 2.
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[39] G. Pâun. On the power of the splicing operation. International Journal
of Computer Mathematics, 59(1–2):27–35, 1995.

[40] J. Reif and T. Song. The computation complexity of temperature-1
tilings. Technical report, Duke University, 2014.

[41] P. W. K. Rothemund and E. Winfree. The program-size complexity of
self-assembled squares. In Proceedings of ACM Symposium on Theory
of Computing (STOC), pages 459–468, 2000.

[42] S. Sahu and J. Reif. Capabilities and limits of compact error resilience
methods for algorithmic self-assembly in two and three dimensions. In
Proceedings of the 12th International Meeting on DNA Computing, vol-
ume 4287 of LNCS, pages 223–238. Springer, 2006.

[43] R. Schulman and E. Winfree. Programmable control of nucleation for
algorithmic self-assembly. SIAM Journal on Computing, 39(4):1581–
1616, 2009.

8



[44] D. Soloveichik, M. Cook, and E. Winfree. Combining self-healing and
proofreading in self-assembly. Natural Computing, 7(2):203–218, 2008.

[45] D. Soloveichik and E. Winfree. Complexity of self-assembled shapes
(extended abstract). In Proceedings of 10th International Workshop on
DNA Computing, volume 3384 of LNCS, pages 344–354. Springer, 2005.

[46] S. M. Summers. Universality in algorithm self-assembly. PhD thesis,
Iowa State University, 2010.

[47] E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, Caltech,
1998.

[48] E. Winfree. Self-healing tile sets. In Nanotechnology: Science and Com-
putation, pages 55–78. Springer, 2006.

[49] E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction
for algorithmic self-assembly. In Proceedings of the 9th International
Workshop on DNA Based Computers (DNA), volume 2943 of LNCS,
pages 126–144. Springer, 2004.

[50] D. Woods. Intrinsic universality and the computational power of self-
assembly. Philosophical Transaction of the Royal Society A, 373(2046),
2015.

[51] T. Yokomori and S. Kobayashi. Dna-ec: a model of dna computing
based on equality checking. In DNA Based Computers III, volume 48
of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 347–359. American Mathematical Society, 1999.

9


