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ABSTRACT

Agent-based simulation has become a key technique for modeling
and simulating dynamic, complicated behaviors in social and be-
havioral sciences. As these simulations become more complex,
they generate an increasingly large amount of data. Lacking the
appropriate tools and support, it has become difficult for social sci-
entists to interpret and analyze the results of these simulations. In
this paper, we introduce the Aggregate Temporal Graph (ATG), a
graph formulation that can be used to capture complex relationships
between discrete simulation states in time. Using this formula-
tion, we can assist social scientists in identifying critical simulation
states by examining graph substructures. In particular, we define
the concept of a Gateway and its inverse, a Terminal, which cap-
ture the relationships between pivotal states in the simulation and
their inevitable outcomes. We propose two real-time computable
algorithms to identify these relationships and provide a proof of
correctness, complexity analysis, and empirical run-time analysis.
We demonstrate the use of these algorithms on a large-scale social
science simulation of political power and violence in present-day
Thailand, and discuss broader applications of the ATG and associ-
ated algorithms in other domains such as analytic provenance.

Index Terms: G.2.2 [Discrete Mathematics]: Graph Theory—
Graph algorithms; H.1.2 [Information Systems]: User/Machine
Systems—Human information processing;

1 INTRODUCTION

Modeling and simulating dynamic, complicated behaviors is a key
component of research in the social and behavioral sciences. In
recent years, stochastic agent-based simulation has become a vi-
tal technique for modeling and exploring these behaviors [20]. As
these simulations become more fine-grained and complex, they
continue to generate increasingly large data sets which must later be
analyzed. A complete exploration of these simulation results could
help social and political scientists understand complicated social
behaviors, find patterns of violence and socioeconomic repression,
predict catastrophic events and better inform the decision-makers
who influence global policy. Unfortunately, the existing methods
and tools available to social scientists for analyzing these results
scale poorly to large simulations, making it difficult to effectively
interpret and analyze the results of these simulations.

Challenges facing social scientists in utilizing large-scale agent-
based simulations to model complex behaviors are not limited to
unmanageable data size and dimensionality. Because these simu-
lations are stochastically seeded and run hundreds or thousands of
times, it is also important to social scientists to be able to compare
simulated behaviors between and across distinct runs, and to be able
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to piece together many simulation runs into a single, cohesive view.
Due to the stochastic nature of these simulations, it may be impos-
sible to predict how many runs are necessary to fully capture the
behavior being simulated, and additional simulation runs are often
expensive, sometimes taking hours to days to complete. Because of
this, it is also important to be able to perform analysis on the fly.

In this paper, we begin to address these needs by developing a
new theoretical framework and visualization techniques for analyz-
ing complex dynamic behaviors. We begin by defining the Aggre-
gate Temporal Graph (ATG). In this graph, a vertex represents a
unique configuration state in the simulation, and a directed edge
denotes a temporal transition between two states. We construct a
directed graph by aggregating a large set of sample sequences from
the agent-based simulation. Each of these sequences can be thought
of as a pathway through the “simulation space”, the set of reachable
configurations in the high-dimensional parameter space. By ag-
gregating these sequences and combining their common states into
shared vertices, we are able to reconstruct the overall shape of the
simulation space. This formulation provides a compact represen-
tation of the high-dimensional data space that preserves temporal
relationships between simulation states. It is generalizable across
various domains and is both structurally and developmentally mod-
ular: analysts can drill down to focus on specific components or
subgraphs of interest, and analysis can begin at any point in the
development of the ATG.

Framing the analysis of these data sets as an ATG problem,
we can apply novel graph analysis techniques to the constructed
graph to detect structural and transitional features such as points of
high revisitation, repeated substructures, reachable subgraphs and
anomalous paths. These features can be mapped to semantic mean-
ing, providing a novel way of analyzing complex dynamic behavior
in various contexts. In this paper, we focus on structures that illumi-
nate causal relationships between states in the simulation. Because
the simulation may still be running live as the analysis begins or
the analyst may choose to modify the graph to focus on interesting
features, the topology of the graph at any point in the analysis is
uncertain, rendering effective precomputation impossible.

In order to facilitate the analytical process even as the topology
of the graph is changing, we develop provably efficient algorithms
for identifying interesting graph substructures on the fly. In addition
to providing a formal theoretical analysis, we demonstrate the use
of these algorithms in a real-time, fully functional prototype visual
analytics system on an ATG-encoding of a large political science
simulation and discuss implications for future work.

This work makes several important contributions toward interac-
tive, real-time analysis of massive agent-based simulations.

1. We present the Aggregate Temporal Graph (ATG) structure
that efficiently encodes temporal relationships between simu-
lation states using a directed graph structure. We also identify
novel substructures whose identification within an ATG struc-
ture has powerful cross-disciplinary semantic implications.

2. We pose efficient algorithms that can be used to identify these
substructures and provide formal proofs of correctness as well
as worst-case bounds.



3. We demonstrate the utility of the ATG framework and pre-
sented algorithms for real-time analysis.

To evaluate the ATG formulation and associated algorithms, we
implement a functional prototype utilizing an existing graph visu-
alization system and perform an empirical evaluation on the results
of a real-world 1000-run simulation on political violence and power
systems in present-day Thailand. We formulate the simulation data
as an ATG containing 14,887 unique vertices and 59,000 edges,
and we demonstrate the analytical process using this structure. Our
findings provide strong evidence for the utility of the ATG frame-
work for real-time analysis of massive simulation datasets.

2 AGENT-BASED SIMULATIONS AS AN ATG
Current research in the social and behavioral sciences relies heavily
on stochastic simulation methods for modeling complex dynamic
problems in political theory [20, 22], evolutionary biology [25],
and criminology [9]. In order to capture the intricate nature of these
real-world phenomena and produce a viable simulation, these mod-
els often contain thousands of interacting agents, each with hun-
dreds of variables controlling its behaviors and relationships. Be-
cause they are stochastic rather than deterministic, each of these
simulations must be run many times over the same data. As simu-
lation methods become more and more powerful, the required run-
ning time and volume of generated data grows dramatically. As
such, there exists a rapidly growing need for better analytical meth-
ods for making sense of the results generated by these simulations.

Because of the large volume of data generated and the inherent
temporal nature of these simulations, agent-based simulation re-
sults are an ideal candidate for representation as an ATG. As agent-
based simulations are discrete, transitions between states during
each timestep can be represented by an edge between vertices in the
ATG that represent these states. After representing the simulation
space as an ATG, we can apply both well-studied and novel graph
algorithms to help analysts locate meaningful underlying structures.
For example, it is of interest to political scientists to be able to de-
tect critical decision points preceding either desirable or undesir-
able states. In the latter case, the military terminology often used to
describe these decision points is “the left of boom”, wherein there
is still an opportunity to prevent catastrophe if the appropriate ac-
tions are taken. Analysts are similarly interested in being able to
detect inevitable (or highly likely) events given some intelligence
describing a starting point in the simulation space. With the abil-
ity to easily detect unavoidable events in a well-described simu-
lation space, analysts could better inform policy-makers regarding
the consequences of a set of actions and better prepare for events
that are highly likely to occur in the real world.

In this paper, we propose two algorithms to identify these struc-
tures and provide proof of correctness, complexity analysis, and
empirical run-time analysis. We demonstrate the use of these algo-
rithms on a large-scale social science simulation of political power
and violence in present-day Thailand. Finally, we discuss applica-
tions of the ATG framework and algorithms in domains such as web
analytics and analytic provenance.

3 RELATED WORK

This project extends existing work on agent-based simulation in the
social and behavioral sciences, as well as work on graph theoretic
techniques for use in visual analytics.

3.1 Agent-Based Simulation in Social and Behavioral
Science

Agent-based simulation is a key technique for modeling complex
dynamic systems in political science, cognitive science, and other
social and behavioral sciences. Increasing computing power means
that systems of increasing complexity can be simulated. For ex-
ample, agent-based simulation is widely used in political science

to model collaboration [2], conflict [28], violence [4], and popula-
tion change [3]. Agent-based simulations have also been used to
identify a country’s political patterns, which might indicate the im-
minence of civil unrest and help predict catastrophic events [21].
Such prediction requires models of a complexity far greater than
those widely used to test single political theories. Lacking the tools
to thoroughly analyze these results, predicting upcoming political
structures using agent-based simulation is imprecise at best.

Similarly, there are gaps in computational modeling for biolog-
ical and cognitive simulations. For example, agent-based simula-
tion systems like NetLogo [29], SWAGES [26], Mace3j [10], and
RePast [6] have been used to explore large parameter spaces of var-
ious cognitive and biological models. In the large-scale simulations
run in these systems, even a relatively simple agent-based model
can produce so much data that it cannot be stored in a regular file
system. Instead, they require a more efficient integrated data man-
agement system that supports parallel insertions into and queries
of the database or the utilization of distributed computation meth-
ods. While tools such as MDSViz and SocialViz [7] provide critical
first steps toward robust visual analytics tools for this domain, there
remains a critical need for tools to support real-time analysis and
iteratively improve agent-based models.

3.2 Graphs in Visual Analytics

Visualization of graph structures is a well-studied area in computa-
tional science. For a survey see work by Herman et al. [13]. How-
ever, the study of graphs in visual analytics has primarily been re-
stricted to the study of entity relationships. There has been much in-
terest in tools for visualizing these relationships in the context of so-
cial networks [12, 14, 32], protein interaction [1, 8, 15], and more.
There has also been recent interest in visualizing entity-relationship
graphs with a temporal component in the area of information prop-
agation through a network [11, 17, 18, 19] While these graphs do
indeed encode a temporal component of the data they represent,
they differ from the aggregate structure we propose in this work in
that they represent the temporal transitions between a known set of
static entities, rather than simulation states being explored.

Our work is also informed by contributions in the area of state
space visualization, such as those made by Van Ham et al. [30, 31],
Pretorius et al. [24, 23], and Blaas et al. [5]. Recent work in this
area explored the visualization of large state spaces, where tradi-
tional node-link diagrams become quickly over-cluttered and fail
to support the analyst in generating insight. As the state space in-
creases, computational support during the visual exploration pro-
cess becomes increasingly more important. Exploring massive sim-
ulation spaces involves similar data-density bounds and visualiza-
tion challenges. To our knowledge, there exists no research on the
utilization of graph structures for aggregated temporal simulation
data in the area of political science.

4 FINDING MEANING THROUGH STRUCTURE

An Aggregate Temporal Graph (ATG) is a directed graph con-
structed by aggregating a large set of sample sequences. In this
graph, a vertex represents a unique configuration state in the sim-
ulation, and a directed edge denotes a temporal transition between
two states. In formulating the analysis of agent-based simulation
results as an ATG, we encode critical information about both the
transitions between individual simulation states as well as the rela-
tionships between simulation runs. Consequently, substructures in
the graph can be mapped to semantically meaningful relationships
between simulation states. By identifying underlying structures in
the ATG, we can assist domain experts in uncovering key and poten-
tially subtle patterns in their simulations. In the following sections,
we present two novel substructures that map to state relationships
of interest to domain experts in social and political science.



4.1 Gateways
Agent-based simulations in political and social science are often
used to simulate the conditions surrounding desirable or undesir-
able situations. In either case, it is of great interest to political sci-
entists to be able to detect pathways of vertices that inevitably lead
into these situations, and to identify critical decision points preced-
ing these paths. In this section, we define the concept of a Gateway
that captures this relationship between vertices.

Definition 1. A maximal path of vertex v is a simple (non-
intersecting) path ending at a vertex r, such that either: 1. r has
no out-edges, or 2. there exists an edge (r,s), with s a vertex in the
path.

Given an ATG G = (V,E) and vertex set V ′ ⊆ V , we consider
the set of maximal paths of vertex v ∈ V and whether every such
maximal path intersects V ′ (see Fig. 1):

Definition 2. A vertex v is a Gateway to a set of vertices V ′ if v
has at least one outgoing edge and every maximal path starting at
v contains some vertex in V ′.

In the special case that V ′ consists of a single vertex r, every
Gateway v to r is a vertex whose maximal paths share a common
set of vertices containing r, i.e. every maximal path of v contains r.

Figure 1: Each of the yellow vertices is a Gateway to the vertex set
{A}. That is, every maximal path leaving a yellow vertex contains A.

To identify the set of Gateways to the input vertex set, we use
an iterative set-building algorithm. By repeatedly growing the set
of known Gateways rather than checking the outgoing paths of ev-
ery vertex from which the input set is reachable, we greatly reduce
the average computation time. We start by initializing the set S of
Gateways equal to the input set (Fig. 2L), as each vertex contained
in this set is trivially a Gateway to the set (see Definition 2). We
then iteratively grow S by traversing each untraversed edge com-
ing into the set of known Gateways and processing its source, ei-
ther adding the source vertex to S or labeling it with the number of
its outgoing edges with a destination that is not a currently known
Gateway (Fig. 2C), with labels maintained by a recursive subrou-
tine when any vertex is added to S. The algorithm terminates when
no additional vertices can be added to S (Fig. 2R). For a more for-
mal definition of this process, see Algorithm 1: FindGateways.

4.1.1 Correctness of the FindGateways Algorithm
Lemma 4.1. During the execution of FindGateways, if a node u
has a label then the label value equals the number of edges (u,r)
with r not in S.

Proof. By induction on the (decreasing) label value Label(u). Ini-
tially Label(u) is set to be exactly the number of edges leaving u
whose destinations are not in S (Line 9 of FindGateways). When
the destination of an edge (u,r) is added to S (Line 4 of FindGate-
ways and Line 3 of UpdateLabel) UpdateLabel is called on u, de-
creasing Label(u) by one. Finally, no node is ever removed from S
and Label(u) never increases.

Algorithm 1: FindGateways

Data: A set of vertices V ′

Result: A set S of all Gateways to a set of vertices V ′

Initialize set S = V ′.1
while ∃ unlabeled vertex w 6∈ S with an outgoing edge to a vertex in S do2

if all edges whose source is w have destination vertices ∈ S then3
Add w to S and set Label(w) = 0.4
for each labeled vertex u with an edge whose destination is w do5

U pdateLabels(u)6
end7

else8
Set Label(w) = to the number of edges whose source is w and whose9
destination 6∈ S.

end10
end11
Return S.12

Recursive Subroutine: UpdateLabel

Data: A vertex u
Decrement Label(u) by 11
if Label(u) == 0 then2

Add u to S3
for each labeled vertex u′ that has an edge to u do4

U pdateLabel(u′)5
end6

end7

Lemma 4.2. Every vertex w added to the set S during the execution
of FindGateways is a Gateway to V ′.

Proof. By induction. The set S is initialized to be V ′, and all ver-
tices in V ′ are Gateways to V ′ by definition. A vertex w is added
to S in two ways: 1. w is unlabeled and for every edge (w,r), the
vertex r is in S (Line 3 of FindGateways), or 2. w is labeled and has
label 0.

In case (1), w is also a Gateway as every maximal path of w con-
sists of a subpath of a maximal path of a vertex r ∈ S, prepended
with the edge (w,r). For case (2), first observe that Label(w) al-
ways corresponds to the number of outgoing edges from w whose
destinations are not in S by Lemma 4.1. Since Label(w) is imme-
diately checked for value 0 upon any change in Label(w) (Line 2
of UpdateLabel) and the initial value of Label(w) is non-zero, w is
always added to S when all outgoing edges have destinations in S.
As shown for case (1), every maximal path of w then must intersect
V ′, so w is a Gateway to V ′.

We now prove two lemmas used in the proof of Lemma 4.5.

Lemma 4.3. If a Gateway v to a vertex set V ′ lies on a cycle then
some vertex r ∈V ′ also lies on the cycle.

Proof. Let v be a Gateway to a vertex set V ′ and let v lie on a cycle.
One maximal path of v consists of the cycle with a single edge
removed: the edge whose destination is v. Since v is a Gateway
to V ′, some vertex r ∈ V ′ must lie on this path and thus on the
cycle.

Lemma 4.4. Let v be a Gateway to a vertex set V ′ with v 6∈ V ′.
Then v has at least one outgoing edge, and for every edge (v,r) the
vertex r is also a Gateway to V ′.

Proof. If v has no outgoing edges, then v has a single maximal path
consisting of itself and is not a Gateway to V ′. Next, suppose by
contradiction that r is not Gateway to V ′. Then r has some maximal
path that does not intersect V ′. If v does not appear in this path, then
prepending v to the path forms a maximal path of v that does not
intersect V ′. On the other hand, if v does appear in this path, then
prepending v to the path forms a non-simple path (that contains a
maximal path of v) that does not intersect V ′. So in either case,
v has a maximal path that does not intersect V ′, contradicting the
assumption that v is a Gateway to V ′. Thus r is a Gateway to V ′.



Figure 2: Execution of the FindGateways algorithm. (L) An interesting simulation state has been identified, and we would like to determine the set
of vertices that inevitably lead to this state. A vertex H representing this state is given as input to the algorithm. (C) After a few iterations, vertices
E and G have been added to the set of Gateways (shown in green) and vertices K and L have been processed and labeled. Yellow vertices are
now in the queue to be processed. (R) Upon completion of the algorithm, the set of Gateways has been iteratively grown as large as possible
and the final set of Gateways (shown in green) is returned.

Lemma 4.5. Every Gateway v to V ′ is added to the set S during
the execution of FindGateways.

Proof. By contradiction. Assume that some Gateway v is not added
to S. All Gateways to V ′ in V ′ are added to S during initialization, so
v 6∈V ′. By Lemma 4.4 every destination of an outgoing edge from
a Gateway v 6∈ V ′ is another Gateway. So there exists a Gateway
v 6∈V ′ such that all outgoing edges from v are in S, otherwise there
is a cycle containing at least one Gateway and no node in V ′ (con-
tradicting Lemma 4.3). By Lemma 4.1, the label of the Gateway v
became 0 during the execution and so was added to S.

Theorem 4.6. The set S returned by FindGateways is the set of
Gateways to the input vertex set V ′.

Proof. By Lemma 4.2 and Lemma 4.5.

4.1.2 Complexity of the FindGateways Algorithm
We maintain a queue of unlabeled nodes with an outgoing edge
whose destination is in S. Nodes are added to the queue at the same
time UpdateLabel is called, and removed in Line 2 of FindGate-
ways. The set S is implemented as a simple linked list, and the
edges are implemented as an undirected adjacency list data struc-
ture with a flag in the source and destination entries indicating the
direction of the edge.

The execution of FindGateways involves O(1) processing for
each vertex or edge in the graph a constant number of times, yield-
ing a total running time of O(|E|) (Theorem 4.7). In practice, the
bound on running time is significantly lower, as the class of cases
where all edges in the graph must be considered are extremely rare
in both randomized directed graphs and ATGs constructed from ac-
tual data (see Section 7).

Theorem 4.7. The FindGateways algorithm runs in O(|E|) time
for an ATG G = (V,E).

Proof. First, note that every node of an ATG has at least one in-
coming or outgoing edge (since every state has either a predecessor
or successor), so V = O(|E|). We use an amortized analysis based
on the edges of G, and show that each edge induces O(1) work.

Line 1 of FindGateways takes |V |= O(|E|) time to add the ele-
ments of V ′ to S and initialize the queue. Line 2 of FindGateways
takes O(1) time for each vertex added to the queue. A vertex is
added for every incoming edge to a vertex added to S, so the queue
has a total of O(|E|) vertices added (with possibly many duplicates)
and executes O(|E|) times. However, since each vertex is immedi-
ately labeled (Line 4 or 9 of FindGateways) it is only processed
within the while loop once. Executing the if-else statement
in Lines 3 through 9 of FindGateways requires checking the outgo-
ing edges of a unique vertex and so takes O(|E|) total time. Finally,

U pdateLabels is called at most once for each edge (u,w) when w
is added to S, and takes O(1) time, using O(|E|) time total.

4.2 Terminals
In the previous section, we described a tractable method for finding
the set of Gateways to any selected set of vertices. In many cir-
cumstances, it is also useful to be able to reverse this process: that
is, given a starting vertex representing a configuration of the sim-
ulation, determine the set of inevitable outcomes (see Fig. 3). In
this section, we define the concept of a Terminal in an ATG, and
present an efficient algorithm for their computation.

Figure 3: Vertex G is a Gateway to each of the yellow vertices, or
Terminals. That is, every maximal path leaving G contains each of
the yellow vertices.

Definition 3. A Terminal of a vertex v is any vertex for which v is
a Gateway.

Because a starting vertex v is a Gateway to a reachable vertex w
if and only if every path out of that vertex eventually passes through
w, it therefore follows that any Terminal of a starting vertex v must
lie on the intersection of all the maximal paths leading out of v.
Unfortunately, while the proof of complexity is beyond the scope
of this paper, it can be shown that even counting the number of
maximal paths leaving a vertex in an arbitrary graph is intractable.

Another possibility would be to simply determine the subgraph
reachable from the starting position, and then use a naı̈ve approach,
running FindGateways algorithm on each vertex in the subgraph
to determine whether or not the starting vertex is contained in its
Gateway set. Because the reachable subgraph could span the entire
graph, and because FindGateways algorithm may need to traverse
each edge in the graph twice each time it is run, this method could
take up to O(|V ||E|) time on a graph G = (V,E). While this is
certainly a dramatic improvement over the previous method, it is
still not efficient enough to be run in real time.

In order to be able to compute these values in real time, we
present a heuristic algorithm that leverages the benefits of both



Figure 4: Execution of the FindTerminals algorithm. (L) A simulation state that closely resembles a real-world interaction has been identified,
and we would like to determine any inevitable future events. A vertex A representing this state is given as input to the algorithm. (C) To minimize
computation, we begin by pruning parts of the graph. We accomplish this by selecting a random maximal path, knowing that only vertices that
appear along this path can meet inevitability criteria. Vertices along this path (shown in yellow) are now in the queue to be processed. (R) After
the execution of the algorithm, the final set of Terminals representing inevitable future states is returned.

of these approaches. Recall that the definition of a Terminal im-
plies that a Terminal lies on the intersection of all maximal paths
out of the source vertex. Therefore, any maximal path leaving the
source vertex is guaranteed to pass through any and all Terminal
vertices that exist. By choosing a random maximal path and run-
ning FindGateways algorithm only on each vertex along the path
rather than the entire subgraph, it is likely that we will eliminate a
large portion of the computation due to performing a preliminary set
reduction (see Fig. 4). Further, the construction of a random maxi-
mal path is guaranteed to find any existing Terminals before repeat-
ing any vertex; any vertex not yet encountered could be avoided
indefinitely traversing this cycle. As such, the construction of a
random maximal path may stop upon traversing any edge leading
back to a vertex already in the path with full confidence that the
path contains all possible Terminals. Our empirical results indicate
that, in practice, randomly chosen maximal paths are overwhelm-
ingly short, due perhaps to the small-world phenomena apparent in
many real-world graphs (see Section 7). We formalize our prune-
and-verify strategy in Algorithm 3: FindTerminals.

4.2.1 Correctness of the FindTerminals Algorithm

By Definitions 2 and 3, all Terminals of a specified source must
appear on all paths leaving the source, and thus FindTerminals
will run FindGateways on all possible terminals of an input ver-
tex v. We showed FindGateways to be correct in the previous sec-
tion (Thm. 4.6) and so the set of Gateways for each vertex that is
evaluated will be correctly returned.

4.2.2 Complexity of the FindTerminals Algorithm

In the worst case, finding a maximal path takes O(|V |) time and
produces a path of length |V | − 1. Executing FindGateways on
each vertex of the path takes O(|E|) time, and all executions take
O(|V ||E|) total time. So the algorithm takes a total of O(|V ||E|)
time, or O(|V |3) time in a graph with |V | vertices. In practice, how-
ever, this algorithm is remarkably fast. For an empirical analysis,
see Section 7.

5 VISUALIZATION SYSTEM

To evaluate the ATG framework and validate our claim that the
algorithms presented in the previous section are useful in an in-
teractive visual analysis environment, we implemented a func-
tional prototype within an existing graph visualization system. Cy-
toscape [27] is designed for use with large, complex networks and
their associated attribute data. It offers a complete, intuitive plugin
API that readily facilitated the implementation of our algorithms.
Using the Cytoscape parser, we can generate ATGs from standard
comma-delimited text files, and augment the vertex-edge structure
with additional vertex and edge attributes representing dimensions

within the original simulation data such as violence, protest, and
dominant political group.

Algorithm 3: FindTerminals
Data: A starting vertex v
Result: A set T of all vertices to which v is a Gateway
Initialize set T = {v}.1
Use GetMaximalPath to find a maximal path P starting at v.2
for each vertex w along P do3

Run FindGateways algorithm on V ′ = {w}4
if v is in the set returned by FindGateways algorithm then5

Add w to T .6
end7

end8
Return T .9

Subroutine: GetMaximalPath
Data: A starting vertex v
Result: A maximal path P starting at v
Add v to P.1
Set currentVertex equal to v2
while currentVertex has no self edges and has outdegree > 0 do3

Choose an outgoing edge at random, and set currentVertex equal to its4
destination.
if currentVertex ∈ P then5

Return P.6
else7

Add currentVertex to P.8
end9

end10
Return P.11

Leveraging this system, analysts are able to interactively perform
modifications to the visual representation of the graph including
layout and clustering, as well as focus on specific attributes using
zooming and the application of native filters. This enables the ana-
lyst to explore the simulation space, identifying areas of interest for
deeper exploration and finding patterns among simulation runs. Us-
ing our algorithms implemented as Cytoscape plugins, we are able
to identify Gateways and Terminals to a user-generated input set in
real time. This close coupling of interactive exploration with robust
computational support for identifying interesting substructures in
the graph provides support throughout the analytical sense-making
process. In the following section, we will discuss several use-case
scenarios and demonstrate how this prototype visual analytics sys-
tem can be used to derive insights on real-world data.

6 APPLICATIONS IN POLITICAL SCIENCE

We have identified meaningful usage scenarios for each of our al-
gorithms that are of interest to our collaborators in political science.
Preliminary presentation to domain experts indicates that using our



Figure 5: (L) Visualization of an ATG generated from 100 runs of an agent-based simulation of political hierarchies. The two yellow vertices
represent an interesting feature: a highly stable vertex pair (note the high degree of revisitation). In red are the results of the FindGateways
algorithm. (R) A simplified graph showing only the input vertices V ′ in yellow, the set of Gateway vertices to this set in red, and critical decision
points and alternatives in green. By extracting and examining this subgraph, the analyst is able to determine that in this case there many
independent paths representing distinct sequences of events leading into the yellow vertices.

prototype system, analysts are able to interact meaningfully with
the data, visually and computationally explore the simulation space,
and derive insight in these areas.

6.1 Keeping to the “Left of Boom”
One important task facing decision makers in political science is
maintaining an awareness of threat scenarios and developing strate-
gies for efficient, cost-effective disaster avoidance. In military ter-
minology, this is known as keeping to the “Left of Boom”. Using
filtering tools, analysts can identify states that exhibit high levels
of violence or states where a known oppressive regime is in power.
Using these states as input to the FindGateways algorithm, they are
able to identify the set of states in the graph that inevitably lead to
dangerous or unfavorable outcomes (see Fig. 5L). This subgraph
can be easily extracted using the visualization tool and reprojected
to help the analyst see the relationships at play (see Fig. 5R). These
states may themselves appear non-threatening, leading traditional
analysis to overlook them, though they in fact represent a favorable
balance of conditions for the rise to power of the oppressive organi-
zation or violent uprisings. By comparing the configurations on the
periphery of the set of Gateways, analysts are able to make recom-
mendations regarding early warning signs to watch for in the real
world and to identify critical decision points.

6.2 Forecasting Outcomes
Another important area of concern for decision-makers is prepara-
tion for upcoming events. Using an ATG built from their simula-
tion data, it is possible for analysts to locate a state in the system
that closely resembles current conditions and to detect unavoidable
future states using the FindTerminals algorithm (see Fig. 6). As
arrival in each of the states yielded by this algorithm is inevitable,
early detection will allow for more informed decisions and the most
specific planning possible.

7 EVALUATION

The formal analyses provided in Section 4 demonstrate worst-case
computational running times with respect to the number of edges
in the graph. For both algorithms, we proved that the running
time is tractably polynomial even in pathological graphs. This indi-
cates that identifying Gateway and Terminal vertices in real-world

graphs is computationally reasonable on a standard machine. In the
following empirical analysis we demonstrate that in an ATG gener-
ated from real data, the expected running time of both algorithms
is significantly lower than the worst-case bound, and we are able to
correctly identify Gateway and Terminal vertices in real-time.

To evaluate the ATG formulation as well as our implementa-
tion of the FindGateways and FindTerminals algorithms, we per-
formed an empirical evaluation on the results of a real-world po-
litical science simulation on political violence and power systems
in present-day Thailand generated by our collaborators in political
science at the University of Pennsylvania. This simulation models
the interaction of 31 political identities, tracking their popularity,
level of violence, protest, power and influence. The simulation was
run 1,000 times, with each run spanning 60 discrete time steps sim-
ulating a period of several months.

The raw data was condensed using the Dynamic Political Hier-
archy (DPH) model developed by Lustick et al. [21], and then for-
mulated as an ATG containing 14,887 unique vertices and 59,000
edges. Each vertex represents a unique DPH configuration of the 31
interacting political identities, and a directed edge represents a tem-
poral transition between two DPH configurations over the course of
one time step. Upon formulating this simulation space as an ATG,
we identify some interesting characteristics of the graph using Cy-
toscape’s native network analysis tools, and then perform a runtime
analysis of our implementation of both algorithms. The following
simulations were run on an Intel Core 2 Quad 2.66Ghz desktop with
2GB of RAM running Windows XP.

7.1 Small World Structure of the ATG
The characteristic path length1 of the resulting ATG is 11.94. This
indicates that despite being a relatively sparse graph (containing
few edges with respect to the number of vertices) the ATG gener-
ated from this data exhibits small-world characteristics [33]. The
short characteristic path length with respect to the size of the graph
suggests the existence of centralized “hub states” through which
many of the simulation runs pass. These states can be identified
explicitly by filtering to show only vertices with a large number of
incoming edges. In Fig. 7L, we provide a filtered view of some of

1For any connected graph the characteristic path length is the average
distance between pairs of vertices in the graph.



Figure 6: (L) Visualization of an ATG generated from 100 runs of an agent-based simulation of political hierarchies. The yellow vertex represents
a simulation state similar to the current political climate. In red are the results of the FindTerminals algorithm. (R) A simplified graph showing only
the input vertex in yellow and the set of Terminal vertices in red. By extracting and examining this subgraph, the analyst is able to see clearly
that in this case there is is only one pathway predicted by the simulation once the yellow vertex has been reached.

these central hubs, condensing duplicated edges and representing
the combined edge count using the weight of the remaining edge.
In this ATG, there exists a set of 20 extremely centralized vertices
(representing < 0.14% of the vertices in the graph) that appear as
endpoints to 35% of all edges in the graph. It is also interesting
to note that in this simulation, these highly centralized vertices are
dominated by only two of the 31 political identities, demonstrating
that these identities are particularly powerful.

7.2 Stable Vertices and Vertex Pairings
Another interesting feature of the ATG built from this data set is
the presence of single vertices and small two-vertex clusters with
extremely large numbers of local edges and very few edges to other
vertices (see Fig. 7C and Fig. 7R). These may be considered lo-
cal minima in the parameter space where the simulation tends to
“settle” at a particular configuration, and may represent stable con-
figurations of Thailand’s political hierarchy.

7.3 Real-Time Utility of FindGateways and FindTerminals

To demonstrate the applicability of our algorithms for use in real-
time analysis, we systematically ran our implemented version on
each vertex in the graph and tracked its running time. In all in-
stances, the FindGateways algorithm terminated in under 1ms and
the FindTerminals algorithm terminated in under 2ms. Compare
this with 16.7ms, the amount of time allotted per frame on aver-
age to achieve 60 frames per second, and this analysis provides
strong evidence for the real-time utility of these algorithms. As a
control, we also tracked the running time of the naı̈ve version of
the FindTerminals algorithm (without first computing a maximal
path). Despite having no theoretical advantage, the FindTerminals
algorithm as implemented reduces the actual running time by ap-
proximately three orders of magnitude, requiring under 2ms in all
instances as compared to over 1000ms using the naı̈ve approach.

8 DISCUSSION AND FUTURE WORK

In the above sections, we have made an argument for the utility of
ATGs in the analysis of agent-based simulation data in social and
political science. However, we believe that this representation as
well as the substructures and algorithms presented are much more
broadly applicable. We propose that this same formulation can

be applied to other problems involving similarly large parameter
spaces that can be explored in pieces. For instance, in collabora-
tive analysis, we can aggregate the analytical trails of all analysts
when using a visualization into an ATG. In this structure, a ver-
tex would represent a configuration of a visualization based on the
P-Set Model [16], and the aggregation of the analytic trails will
correspond to insights and data representations that have been ex-
plored. The FindGateways algorithm can then be applied to this
ATG structure to assist a novice analyst joining the collaboration.

In addition to collaborative analysis, there are many other prob-
lems that could be formulated as an ATG where the Gateway
and Terminal structures can correspond to meaningful discoveries.
While we have identified several rich applications of this frame-
work, one persistent challenge for working within the ATG frame-
work is identifying an appropriate means for describing states rep-
resenting their data. If each configuration of the entire parameter
space is represented as a unique vertex, then it is highly likely that
the resulting ATG will be highly disconnected, making patterns im-
possible to detect. If the description of the set of vertices is too
coarse, then the loss of detail could predicate patterns with little or
no semantic value. Under a well-formed encoding, highly similar
vertices are merged while still maintaining the integrity of the over-
all shape of the space. In future work, we would like to explore
the semi-automatic generation of distance functions that could help
analysts identify meaningful vertex encodings.

9 CONCLUSION

In this paper, we introduced a graph formulation to capture com-
plex relationships between discrete simulation states in time called
an Aggregate Temporal Graph (ATG). We defined the concept of
a Gateway and its inverse, a Terminal, which capture the relation-
ships between pivotal states in the simulation and their inevitable
outcomes. We proposed efficient algorithms to identify these re-
lationships and provide a proof of correctness, complexity analy-
sis, and empirical run-time analysis. Using this formulation, we
demonstrated the use of these algorithms on a large-scale social
science simulation of political power and violence in present-day
Thailand. Finally, we discussed broader applications of the ATG
and Gateway/Terminal algorithms in domains outside social and
political science and proposed areas for future research.



Figure 7: Examples of interesting structures seen in the ATG generated from an agent-based simulation of political violence in Thailand. (L) A
tightly interconnected group of “hub” vertices. In this view, repeated edges have been represented using edge weight, vertex indegree is mapped
to vertex size, and the vertex is labeled with the dominant identity in the configuration the vertex encodes. (C) A stable vertex, highlighted in
yellow. The majority of the edges incident to this vertex are self-loops, suggesting that the simulation often remains in this same configuration
state over a period of several timesteps. (R) A stable pairing, highlighted in yellow. Note that the majority of the edges incident to this pair are
shared, suggesting that the simulation often bounces between these same two configuration states over a period of several timesteps.
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