
Staged Self-Assembly and Polyomino
Context-Free Grammars?

Andrew Winslow??

Department of Computer Science, Tufts University,
awinslow@cs.tufts.edu

Abstract. Previous work by Demaine et al. (2012) developed a strong
connection between smallest context-free grammars and staged self-assembly
systems for one-dimensional strings and assemblies. We extend this work
to two-dimensional polyominoes and assemblies, comparing staged self-
assembly systems to a natural generalization of context-free grammars
we call polyomino context-free grammars (PCFGs).
We achieve nearly optimal bounds on the largest ratios of the smallest
PCFG and staged self-assembly system for a given polyomino with n
cells. For the ratio of PCFGs over assembly systems, we show that the
smallest PCFG can be an Ω(n/ log3 n)-factor larger than the smallest
staged assembly system, even when restricted to square polyominoes. For
the ratio of assembly systems over PCFGs, we show that the smallest
staged assembly system is never more than a O(logn)-factor larger than
the smallest PCFG and is sometimes an Ω(logn/ log log n)-factor larger.

1 Introduction

In the mid-1990s, the Ph.D. thesis of Erik Winfree [14] introduced a theoretical
model of self-assembling nanoparticles. In this model, which he called the abstract
tile assembly model (aTAM), square particles called tiles attach edgewise to each
other if their edges share a common glue and the bond strength is sufficient
to overcome the kinetic energy or temperature of the system. The products of
these systems are assemblies: aggregates of tiles forming via crystal-like growth
starting at a seed tile. Surprisingly, these tile systems have been shown to be
computationally universal [14,5], self-simulating [8,9], and capable of optimally
encoding arbitrary shapes [12,1,13].

In parallel with work on the aTAM, a number of variations on the model
have been proposed and investigated. One well-studied variant called the hierar-
chical [4] or two-handed assembly model (2HAM) [6] eliminates the seed tile and
allows tiles and assemblies to attach in arbitrary order. This model was shown
to be capable of (theoretically) faster assembly of squares [4] and simulation of
aTAM systems [2], including capturing the seed-originated growth dynamics. A
generalization of the 2HAM model proposed by Demaine et al. [6] is the staged

? A full version of this paper can be found at http://arxiv.org/abs/1304.7038
?? Supported in part by National Science Foundation grant CBET-0941538.

awinslow@cs.tufts.edu
http://arxiv.org/abs/1304.7038

2 A. Winslow

assembly model, which allows the assemblies produced by one system to be used
as reagents (in place of tiles) for another system, yielding systems divided into
sequential assembly stages. They showed that such sequential assembly systems
can replace the role of glues in encoding complex assemblies, allowing the con-
struction of arbitrary shapes efficiently while only using a constant number of
glue types, a result impossible in the aTAM or 2HAM.

To understand the power of the staged assembly model, Demaine et al. [7]
studied the problem of finding the smallest system producing a one-dimensional
assembly with a given sequence of labels on its tiles, called a label string. They
proved that for systems with a constant number of glue types, this problem is
equivalent to the well-studied problem of finding the smallest context-free gram-
mar whose language is the given label string, also called the smallest grammar
problem (see [11,3]). For systems with unlimited glue types, they proved that the
ratio of the smallest context-free grammar over the smallest system producing
an assembly with a given label string of length n (which they call separation) is
Ω(

√
n/ log n) and O((n/ log n)2/3) in the worst case.

In this paper we consider the two-dimensional version of this problem: finding
the smallest staged assembly system producing an assembly with a given label
polyomino. For systems with constant glue types and no cooperative bonding, we
achieve separation of grammars over these systems of Ω(n/(log log n)2) for poly-
ominoes with n cells (Sect. 6.1), and Ω(n/ log3 n) when restricted to rectangular
(Sect. 6.2) or square (Sect. 6.3) polyominoes with a constant number of labels.
Adding the restriction that each step of the assembly process produces a single
product, we achieveΩ(n/ log3 n) separation for general polyominoes with a single
label (Sect. 6.1). For the separation of staged assembly systems over grammars,
we achieve bounds of Ω(log n/ log log n) (Sect. 4) and, constructively, O(log n)
(Sect. 5). For all of these results, we use a simple definition of context-free gram-
mars on polyominoes that generalizes the deterministic context-free grammars
(called RCFGs) of [7].

When taken together, these results give a nearly complete picture of how
smallest context-free grammars and staged assembly systems compare. For some
polyominoes, staged assembly systems are exponentially smaller than context-
free grammars (O(log n) vs. Ω(n/ log3 n)). On the other hand, given a polyomino
and grammar deriving it, one can construct a staged assembly system that is a
(nearly optimal) O(log n)-factor larger and produces an assembly with a label
polyomino replicating the polyomino.

2 Staged Self-Assembly

An instance of the staged tile assembly model is called a staged assembly system
or system, abbreviated SAS. A SAS S = (T,G, τ,M,B) is specified by five
parts: a tile set T of square tiles, a glue function G : Σ(G)2 → {0, 1, . . . , τ}, a
temperature τ ∈ N, a directed acyclic mix graph M = (V,E), and a start bin
function B : VL → T from the leaf vertices VL ⊆ V of M with no incoming
edges.

Staged Self-Assembly and Polyomino Context-Free Grammars 3

Each tile t ∈ T is specified by a 5-tuple (l, gn, ge, gs, gw) consisting of a label
l taken from an alphabet Σ(T) (denoted l(t)) and a set of four non-negative
integers in Σ(G) = {0, 1, . . . , k} specifying the glues on the sides of t with
normal vectors 〈0, 1〉 (north), 〈1, 0〉 (east), 〈0,−1, 〉 (south), and 〈−1, 0〉 (west),
respectively, denoted gu(t). In this work we only consider glue functions with
the constraints that if G(gi, gj) > 0 then gi = gj , and G(0, 0) = 0.

A configuration is a partial function C : Z2 → T mapping locations on
the integer lattice to tiles. Any two locations p1 = (x1, y1), p2 = (x2, y2) in
the domain of C (denoted dom(C)) are adjacent if ||p2 − p1|| = 1 and the
bond strength between any pair of tiles C(p1) and C(p2) at adjacent locations
is G(gp2−p1

(C(p1)), gp1−p2
(C(p2)). A configuration is a τ -stable assembly or an

assembly at temperature τ if dom(C) is connected on the lattice and, for any
partition of dom(C) into two subconfigurations C1, C2, the sum of the bond
strengths between tiles at pairs of locations p1 ∈ dom(C1), p2 ∈ dom(C2) is at
least τ . Any pair of configurations C1, C2 are equivalent if there exists a vector
v = 〈x, y〉 such that dom(C1) = {p + v | p ∈ dom(C2)} and C1(p) = C2(p + v)
for all p ∈ dom(C1). Two τ -stable assemblies A1, A2 are said to assemble into
a superassembly A3 if there exists a translation vector v = 〈x, y〉 such that
dom(A1)∩ {p+ v | p ∈ A2} = ∅ and A3 defined by the partial functions A1 and
A′2 with A′2(p) = A2(p+ v) is a τ -stable assembly.

Each vertex of the mix graph M describes a two-handed assembly process.
This process starts with a set of τ -stable input assemblies I. The set of assembled
assemblies Q is defined recursively as I ⊆ Q, and for any pair of assemblies
A1, A2 ∈ Q with superassembly A3, A3 ∈ Q. Finally, the set of products P ⊆ Q
is the set of assemblies A such that for any assembly A′, no superassembly of A
and A′ is in Q.

The mix graph M = (V,E) of S defines a set of two-handed assembly pro-
cesses (called mixings) for the non-leaf vertices of M (called bins). The input
assemblies of the mixing at vertex v is the union of all products of mixings at
vertices v′ with (v′, v) ∈ E. The start bin function B defines the lone single-tile
product of each mixings at a leaf bin. The system S is said to produce an as-
sembly A if some mixing of S has a single product, A. We define the size of S,
denoted S, to be |E|, the number of edges in M . If every mixing in a S has a
single product, then S is a singular self-assembly system (SSAS).

The results of Section 6.4 use the notion of a self-assembly system S ′ simu-
lating a system S by carrying out the same sequence of mixings and producing
a set of scaled assemblies. Formally, we say a system S ′ = (T ′, G′, τ,M ′, B′)
simulates a system S = (T,G, τ,M,B) at scale b if there exist two functions f ,
g with the following properties:

(1) The function f : (Σ(T ′) ∪ {∅})b2 → Σ(T) ∪ {∅} maps the labels of b × b
regions of tiles (called blocks) to a label of a tile in T . The empty label ∅
denotes no tile.

(2) The function g : S′ → V maps a subset S′ of the vertices of the mix graph
M ′ to vertices of the mix graph M such that g is an isomorphism between
the subgraph induced by S′ in M ′ and the graph M .

4 A. Winslow

a b c

a

b

a

b

c

c

cba

Fig. 1. A self-assembly system (SAS) consisting of a mix graph and tile types (left), and
the assemblies produced by carrying out the algorithmic process of staged self-assembly
(right).

(3) Let P (v) be the set of products of the bin corresponding to vertex v in a
mix graph. Then for each vertex v ∈ M with v′ = g−1(v), P (v) = {f(p) |
p ∈ P (v′)}.

Intuitively, f defines a correspondence between the b-scaled macrotiles in S ′
simulating tiles in S, and g defines a correspondence between bins in the systems.
Property (3) requires that f and g do, in fact, define correspondence between
what the systems produce.

The self-assembly systems constructed in Sections 5 and 6 produce only
mismatch-free assemblies: assemblies in which every pair of incident sides of two
tiles in the assembly have the same glue. A system is defined to be mismatch-free
if every product of the system is mismatch-free.

3 Polyomino Context-Free Grammars

Here we describe polyominoes, a generalization of strings, and polyomino context-
free grammars, a generalization of deterministic context-free grammars. These
objects replace the strings and restricted context-free grammars (RCFGs) of
Demaine et al. [7].

A labeled polyomino or polyomino P = (S,L) is defined by a connected set of
points S on the square lattice (called cells) containing (0, 0) and a label function
L : S → Σ(P) mapping each cell of P to a label contained in an alphabet
Σ(P). The size of P is the number of cells P contains and is denoted |P |.
The label of the cell at lattice point (x, y) is denoted L((x, y)) and we define
P (x, y) = L((x, y)) for notational convenience. We refer to the label or color of
a cell interchangeably.

Staged Self-Assembly and Polyomino Context-Free Grammars 5

Define a polyomino context-free grammar (PCFG) to be a quadruple G =
(Σ,Γ, S,∆). The set Σ is a set of terminal symbols and the set Γ is a set of non-
terminal symbols. The symbol S ∈ Γ is a special start symbol. Finally, the set ∆
consists of production rules, each of the form N → (R1, (x1, y1)) . . . (Rj , (xj , yj))
where N ∈ Γ and is the left-hand side symbol of only this rule, Ri ∈ N ∪T , and
each (xi, yi) is a pair of integers. The size of G is defined to be the total number
of symbols on the right-hand sides of the rules of ∆.

A polyomino P can be derived by starting with S, the start symbol of G,
and repeatedly replacing a non-terminal symbol with a set of non-terminal and
terminal symbols. The set of valid replacements is ∆, the production rules of G,
where a non-terminal symbol N with lower-leftmost cell at (x, y) can be replaced
with a set of symbols R1 at (x+x1, y+y1), R2 at (x+x2, y+y2), . . . , Rj at (x+
xj , y+ yj) if there exists a rule N → (R1, (x1, y1))(R2, (x2, y2)) . . . (Rj , (xj , yj)).
Additionally, the set of terminal symbol cells derivable starting with S must be
connected and pairwise disjoint.

The polyomino P derived by the start symbol of a grammar G is called the
language of G, denoted L(G), and G is said to derive P . In the remainder of
the paper we assume that each production rule has at most two right-hand side
symbols (equivalent to binary normal form for 1D CFGs), as any PCFG can be
converted to this form with only a factor-2 increase in size. Such a conversion
is done by iteratively replacing two right-hand side symbols Ri, Ri′ with a new
non-terminal symbol Q, and adding a new rule replacing Q with Ri and Ri′ .

Intuitively, a polyomino context-free grammar is a recursive decomposition
of a polyomino into smaller polyominoes. Because each non-terminal symbol is
the left-hand side symbol of at most one rule, each non-terminal corresponds
to a subpolyomino of the derived polyomino. Then each production rule is a
decomposition of a subpolyomino into smaller subpolyominoes (see Figure 2).

⇒

N → (R, (0, 0))(R, (3, 0))

a b c

c

b c

c

a a b c

c

a b c

c

Fig. 2. Each production rule in a PCFG generating a single shape is a decomposition of
the left-hand side non-terminal symbol’s polyomino into the right-hand side symbols’
polyominoes.

In this interpretation, the smallest grammar deriving a given polyomino is
equivalent to a decomposition using the fewest distinct subpolyominoes in the
decomposition. As for the smallest CFG for a given string, the smallest PCFG
for a given polyomino is deterministic and finding such a grammar is NP-hard.
Moreover, even approximating the smallest grammar is NP-hard [3], and achiev-
ing optimal approximation algorithms remains open [10].

6 A. Winslow

In Section 5 we construct self-assembly systems that produce assemblies
whose label polyominoes are scaled versions of other polyominoes, with some
amount of “fuzz” in each scaled cell. A polyomino P ′ = (S′, L′) is said to be
a (c, d)-fuzzy replica of a polyomino P = (S,L) if there exists a vector 〈xt, yt〉
with the following properties:

1. For each block of cells S ′(i,j) = {(x, y) | xt + di ≤ x < xt + d(i+ 1), yt + dj ≤
y < yt +d(j+1)} (called a supercell), S ′(i,j)∩S′ 6= ∅ if and only if (i, j) ⊆ S.

2. For each supercell S ′(i,j) containing a cell of P ′, the subset of label cells

{(x, y) | xt+di+(d−c)/2 ≤ x < xt+d(i+1)+(d−c)/2, yt+dj+(d−c)/2 ≤
y < yt + d(j + 1) + (d− c)/2} consists of c2 cells of P ′, with all cells having
identical label, called the label of the supercell and denoted L(i,j).

3. For each supercell S ′(i,j), any cell that is not a label cell of S ′(i,j) has a common

fuzz label in L′.
4. For each supercell S ′(i,j), the label of the supercell L′(i,j) = P (i, j).

Properties (1) and (2) define how sets of cells in P ′ replicate individual cells in
P , and the labels of these sets of cells and individual cells. Property (3) restricts
the region of each supercell not in the label region to contain only cells with a
common fuzz label. Property (4) requires that each supercell’s label matches the
label of the corresponding cell in P .

4 SAS over PCFG Separation Lower Bound

This result uses a set of shapes we call n-stagglers, an example is seen in Figure 3.
The shapes consist of log n bars of dimensions n/ log n × 1 stacked vertically
atop each other, with each bar horizontally offset from the bar below it by some
amount in the range −(n/ log n − 1), . . . , n/ log n − 1. We use the shorthand
that log n = blog nc for conciseness. Every sequence of log n − 1 integers, each
in the range [−(n/ log n − 1), n/ log n − 1], encodes a unique staggler and by
the pidgeonhole principle, some n-staggler requires log((2n/ log n − 1)logn−1 =
Ω(log2 n) bits to specify.

log 28 = 8

n/ log n = 28/8

Fig. 3. The 28-staggler specified by the sequence −18, 13, 9,−17,−4, 12,−10.

Lemma 1. Any n-staggler can be derived by a PCFG of size O(log n).

Staged Self-Assembly and Polyomino Context-Free Grammars 7

Proof. A set of O(log n) production rules deriving a bar (of size Θ(n/ log n)×1)
can be constructed by repeatedly doubling the length of the bar, using an addi-
tional log n rules to form the bar’s exact length. The result of these production
rules is a single non-terminal B deriving a complete bar.

Using the non-terminal B, a stack of k bars can be described using a produc-
tion rule N → (B, (x1, 0))(B, (x2, 1)) . . . (B, (xk, k−1)), where the x-coordinates
x1, x2, . . . , xk encode the offsets of each bar relative to the bar below it. An equiv-
alent set of k − 1 production rules in binary normal form can be produced by
creating a distinct non-terminal for Ti each stack of the first i bars, and a pro-
duction rule Ti → (Ti−1, (0, 0))(B, (xi, i)) encoding the offset of the topmost bar
relative to the stack of bars beneath it.

In total, O(log n) rules are used to create B, the non-terminal deriving a bar,
and O(log n) are used to create the stack of bars, one per bar. So the n-staggler
can be constructed using a PCFG of size O(log n).

Lemma 2. For every n, there exists an n-staggler P such that any SAS or SSAS
producing an assembly with label polyomino P has size Ω(log2 n/ log log n).

Proof. The proof is information-theoretic. Recall that more than half of all n-
stagglers require Ω(log2 n) bits to specify. Now consider the number of bits
contained in a SAS S. Recall that |S| is the number of edges in the mix graph
of S. Any SAS can be encoded naively using O(|S| log |S|) bits to specify the
mix graph, O(|T | log |T |) bits to specify the tile set, and O(|S| log |T |) bits to
specify the tile type at each leaf node of the mix graph. Because the number
of tile types cannot exceed the size of the mix graph, |T | ≤ |S|. So the total
number of bits needed to specify S (and thus the number of bits of information
contained in S) is O(|S| log |S| + |T | log |T | + |S| log |S|) = O(|S| log |S|). So
some n-staggler requires a SAS S such that O(|S| log |S|) = Ω(log2 n) and thus
|S| = Ω(log2 n/ log log n).

Theorem 1. The separation of SASs and SSASs over PCFGs is Ω(log n/ log log n).

Proof. By the previous two lemmas, more than half of all n-stagglers require
SASs and SSASs of size Ω(log2 n/ log log n) and all n-stagglers have PCFGs of
size O(log n). So the separation is Ω(log n/ log log n).

We also note that scaling the n-staggler by a c-factor produces a shape which
is derivable by a CFG of size O(log n + log c). That is, the result still holds for
n-stagglers scaled by any amount polynomial in n. For instance, the O(n)-factor
of the construction of Theorem 2.

At first it may not be clear how PCFGs achieve smaller encodings. After all,
each rule in a PCFG G or mixing in SAS S specifies either a set of right-hand
side symbols or set of input bins to use and so has up to O(log |G|) or O(log |S|)
bits of information. The key is the coordinate describing the location of each
right-hand side symbol. These offsets have up to O(log n) bits of information
and in the case that G is small, say O(log n), each rule has a number of bits
linear in the size of the PCFG!

8 A. Winslow

5 SAS over PCFG Separation Upper Bound

Next we show that the separation lower bound of the last section is nearly large
as possible by giving an algorithm for converting any PCFG G into a SSAS S
with system size O(|G| log n) such that S produces an assembly that is a fuzzy
replica of the polyomino derived by G. Before describing the full construction,
we present approaches for efficiently constructing general binary counters and
for simulating glues using geometry.

0

1

1

0

10

00

Increment 0011b by 1, yielding 0100b.

Fig. 4. A binary counter row constructed using single-bit constant-sized assemblies.
Dark blue and green glues indicate 1-valued carry bits, light blue and green glues
indicate 0-valued carry bits.

The binary counter row assemblies used here are a generalization of those by
Demaine et al. [6] consisting of constant-sized bit assemblies, and an example is
seen in Figure 4. Our construction achieves O(log n) construction of arbitrary
ranges of rows and increment values, in contrast to the contruction of [6] that
only produces row sets of the form 0, 1, . . . , 22

m − 1 that increment by 1. To do
so, we show how to construct two special cases from which the generalization
follows easily.

Lemma 3. Let i, j, n be integers such that 0 ≤ i ≤ j < n. There exists a SSAS
of size O(log n) with a set of bins that, when mixed, assemble a set of j − i+ 1
binary counter rows with values i, i+ 1, . . . , j incremented by 1.

Lemma 4. Let k, n be integers such that 0 ≤ k ≤ n and n = 2m. There exists a
SSAS of size O(log n) with a set of bins that, when mixed, assemble a set of 2m

binary counter rows with values 0, 1, . . . , 2m − 1 incremented by k.

Lemma 5. Let i, j, k, n be integers such that 0 ≤ i ≤ j < n and 0 ≤ k ≤ n.
There exists a SSAS of size O(log n) with a set of bins that, when mixed, assemble
a set of j− i+ 1 binary counter rows with values i, i+ 1, . . . , j incremented by k.

Proof. Combine the constructions used in the proofs of Lemmas 3 and 4 by using
mixing sequences as in the proof of Lemma 3 and sets of four subassemblies
encoding input, carry, and increment bit values as in the proof of Lemma 4.

Staged Self-Assembly and Polyomino Context-Free Grammars 9

Theorem 8 of Demaine et al. [6] describes how to reduce the number of glues
used in a system by replacing each tile with a large macrotile assembly, and
encoding the tile’s glues via unique geometry on the macrotile’s sides. We prove
a similar result for labeled tiles, used for proving Theorems 2, 3, and 7.

Lemma 6. Any mismatch-free τ = 1 SAS (or SSAS) S = (T,G, τ,M) can
be simulated by a SAS (or SSAS) S ′ at τ = 1 with O(1) glues, system size
O(Σ(T)|T |+ |S|), and O(log |G|) scale.

Armed with these tools, we are ready to convert PCFGs into SSASs. Recall
that in Section 4 we showed that in the worst case, converting a PCFG into a
SSAS (or SAS) must incur an Ω(log n/ log log n)-factor increase in system size.
Here we achieve a O(log n)-factor increase.

Theorem 2. For any polyomino P with |P | = n derived by a PCFG G, there
exists a SSAS S with |S| = O(|G| log n) producing an assembly with label poly-
omino P ′, where P ′ is a (O(log n), O(n))-fuzzy replica of P .

Proof. We combine the macrotile construction of Lemma 6, the generalized coun-
ters of Lemma 5, and a macrotile assembly invariant that together enable efficient
simulation of each production rule in a PCFG by a set of O(log n) mixing steps.

Macrotiles. The macrotiles used are extended versions of the macrotiles
in Lemma 6 with two modifications: a secondary, resevoir macroglue assembly
on each side of the tile in addition to a primary bonding macroglue, and a thin
cage of dimensions Θ(n) × Θ(log n) surrounding each resevoir macroglue (see
Figure 5).

Mixing a macrotile with a set of bins containing counter row assemblies con-
structed by Lemma 5 causes completed (and incomplete) counter rows to attach
to the macrotile’s macroglues. Because each macroglue’s geometry matches the
geometry of exactly one counter row, a partially completed counter row that
attaches can only be completed with bit assemblies that match the macroglue’s
value. As a result, mixing the bin sets of Lemma 5 with an assembly consisting
of macrotiles produces the same set of products as mixing a completed set of
binary counter rows with the assembly.

An attached counter row effectively causes the macroglue’s value to change,
as it presents geometry encoding a new value and covers the macroglue’s previous
value. The cage is constructed to have height sufficient to accomodate up to n
counter rows attached to the reservoir macroglue, but no more.

Because of the cage, no two macrotiles can attach by their bonding macroglues
unless the macroglue has more than n counter rows attached. Alternatively, one
can produce a thickened counter row with thickness sufficient to extend beyond
the cage. We call such an assembly a macroglue activator, as it “activates” a
bonding macroglue to being able to attach to another promoted macroglue on
another macrotile. Notice that a macroglue activator will never attach to a bond-
ing macroglue’s resevoir twin, as the cage is too small to contain the activator.

An invariant. Counter rows and activators allow precise control of two
properties of a macrotile: the identities of the macroglues on each side, and

10 A. Winslow

Resevoir
macroglue

Bonding
macroglue

Cage

Core

Macroglue
activator

Counter row

Fig. 5. A macrotile used in converting a PCFG to a SAS, and examples of value
maintenance and offset preparation.

whether these glues are activated. In a large assembly containing many macroglues,
the ability to change and activate glues allows precise encoding of how an as-
sembly can attach to others. In the remainder of the construction we maintain
the invariant that every macrotile has the same glue identity on all four sides,
and any macrotile assembly consists of macrotiles with glue identities forming a
contiguous interval, e.g. 4, 5, 6, 7. Intervals are denoted [i, i′], e.g. [g4, g7].

By Lemma 5, a set of row counters incrementing the glue identities of all glues
on a macrotile can be produced using O(log n) work. Activators, by virtue of
being nearly rectangular with O(log n) cells of bit geometry can also be produced
using O(log n) work.

Production rule simulation. Consider a PCFG with non-terminal N
and production rule N → (R1, (x1, y1))(R2, (x2, y2)) and a SSAS with two bins
containing assemblies A1, A2 with the label polyominoes of A1 and A2 being
fuzzy replicas of the polyominoes derived by R1 and R2. Also assume A1 and A2

are assembled from the macrotiles just described, including the invariant that
the identities of the glues on A1 and A2 are identical on all sides of a macrotile
and contiguous across the assembly, i.e. the identities of the glues are [i1, j1] and
[i2, j2] on assemblies A1 and A2, respectively.

Staged Self-Assembly and Polyomino Context-Free Grammars 11

Select two cells cR1
, cR2

, in the polyominoes derived by R1 and R2 adjacent in
polyomino derived by N . Define the glue identities of the two macrotiles forming
the supercells mapped to cR1 and cR2 to be g1 and g2. Then the glue sets on A1

and A2 can be decomposed into three subsets [i1, g1 − 1], [g1], [g1 + 1, j1] and
[i2, g2 − 1], [g2], [g2 + 1, j2], respectively. We change these glue values in three
steps:

1. Construct two sets of row counters that increment i1 through g1 by j1−i1+1
and i2 through g2 by g2−i2+1, and mix them in separate bins with A1 and A2

to produce two new assemblies A′1 and A′2. Assemblies A′1 and A′2 have glues
[g1 +1, g1 + j1− i1 +1] and [g2, g2 + j2− i2], respectively, and the macroglues
with values g1 and g2 now have values g′1 = g1+(g1−i1)+j1+1 and g′2 = g2,
i.e. the glues of A′1 and A′2 are [g′1 − (j1 − i1), g′1] and [g′2, g

′
2 + j2 − i2].

2. Construct a set of row counters that increment the values of all glues on
A′2 by g′2 − g′1 + 1 if this value is positive, and mix the counters with A′2 to
produce A′′2 . Then the macroglue with value g′2 now has value g′′2 = g′1 + 1
and the glue values of A′1 and A′′2 are [g′1− (j1− i1), g′1] and [g′′2 , g

′′
2 + j2− i2].

3. Construct a pair of macroglue activators with values g′1 and g′′2 that attach
to the pair of macroglue sides matching the two adjacent sides of cells cR1

and cR2
. Mix each activator with the corresponding assembly A′1 or A′′2 .

Mixing A′1 and A′′2 with the pair of activated macroglues causes them to
bond in exactly one way to form a superassembly A3 whose label polyomino is
a fuzzy replica of the polyomino derived by N . Moreover, the glue values of the
macrotiles in A3 are [g′1−(j1−i1), g′′2 +j2−i2], maintaining the invariant. Because
each macrotile has a resevoir macroglue on each side, any bonding macroglue
with an activator already attached has a resevoir macroglue that accepts the
matching row counter, so each mixing has a single product and specifically no
row counter products.

System scale The PCFG P contains at most n production rules. Also,
each step shifts glue identities by at most n (the number of distinct glues on the
macrotile), so the largest glue identity on the final macrotile assembly is n2. So
we produce macrotiles with core assemblies of size O(log n)×O(log n) and cages
of size O(n). Assembling the core assemblies, cages, and initial macroglue assem-
blies of the macrotiles takes O(|P | log n+log n+log n) = O(|P | log n) work, dom-
inated by the core assembly production. Simulating each production rule of the
grammar takes O(log n) work spread across a constant number of O(log n)-sized
sequences of mixings to produce sets of row counters and macroglue activators.

Applying Lemma 6 to the construction (creating macrotiles of macrotiles)
gives a constant-glue version of Theorem 2:

Theorem 3. For any polyomino P with |P | = n derived by a PCFG G, there
exists a SSAS S ′ using O(1) glues with |S ′| = O(|G| log n) producing an assembly
with label polyomino P ′, where P ′ is a (O(log n log log n), O(n log log n))-fuzzy
replica of P .

12 A. Winslow

Proof. The construction of Theorem 2 usesO(log n) glues, namely for the counter
row subconstruction of Lemma 5. With the exception of the core assemblies, all
tiles of S have a common fuzz (gray) label, so creating macrotile versions of these
tiles and carrying out all mixings involving these macrotiles and completed core
assemblies is possible with O(1·|T |+|S|) = O(|S|) mixings and scale O(log log n).
Scaled core assemblies of size Θ(n log logn)× Θ(n log log n) can be constructed
using constant glues and O(log(n log log n)) = O(log n) mixings, the same num-
ber of mixings as the unscaled Θ(n) × Θ(n) core assemblies of Theorem 2. So
in total, this modified construction has system size O(|S|) = O(|G| log n) and
scale O(log log n). Thus it produces an assembly with label polyomino that is a
(O(log n log log n), O(n log log n))-fuzzy replica of P .

The results in this section and Section 4 achieve a “one-sided” correspondence
between the smallest PCFG and SSAS encoding a polyomino, i.e. the smallest
PCFG is approximately an upper bound for the smallest SSAS (or SAS). Since
the separation upper bound proof (Theorem 2) is constructive, the bound also
yields an algorithm for converting a a PCFG into a SSAS.

6 PCFG over SAS and SSAS Separation Lower Bound

Here we develop a sequence of PCFGs over SAS and SSAS separation results, all
within a polylogarithmic factor of optimal. The results also hold for polynomially
scaled versions of the polyominoes, which is used to prove Theorem 7 at the end
of the section. This scale invariance also surpasses the scaling of the fuzzy replicas
in Theorems 2 and 3, implying that this relaxation of the problem statement in
these theorems was not unfair.

6.1 General shapes

We show that the separation of PCFGs over SASs and SSASs is Ω(n/ log n) using
a weak binary counter, seen in Figure 6. These shapes are macrotile versions of
the doubly-exponential counters found in [6] with three modifications:

1. Each row is a single path of tiles, and any path through an entire row
uniquely identifies the row.

2. Adjacent rows do not have adjacent pairs of tiles, i.e. they do not touch.
3. Consecutive rows attach at alternating (east, west, east, etc.) ends.

Lemma 7. There exists a τ = 1 SAS of size O(b) that produces a 2b-bit weak
counter.

Lemma 8. For any PCFG G deriving a 2b-bit weak counter, |G| = Ω(22
b

).

Theorem 4. The separation of PCFGs over τ = 1 SASs for single-label poly-
omines is Ω(n/(log log n)2).

Staged Self-Assembly and Polyomino Context-Free Grammars 13

Fig. 6. Two-bit examples of the weak (left), end-to-end (upper right), and block (lower
right) binary counters used to achieve separation of PCFGs over SASs and SSASs in
Section 6.

Proof. By the previous two lemmas, there exists a SAS of size O(b) producing

a b-bit weak counter, and any PCFG deriving this shape has size Ω(22
b

). The

assembly itself has size n = Θ(22
b

b), as it consists of 22
b

rows, each with b sub-
assemblies of constant size. So the separation is Ω((n/b)/b) = Ω(n/(log log n)2).

Corollary 1. The separation of PCFGs over τ = 1 SSASs for single-label poly-
ominoes is Ω(n/ log2 n).

6.2 Rectangles

For the weak counter construction, the lower bound in Lemma 8 depended on
the poor connectivity of the weak counter polyomino. This dependancy suggests
that such strong separation ratios may only be achievable for special classes
of “weakly connected” or “serpentine” shapes. Restricting the set of shapes to
rectangles or squares while keeping an alphabet size of 1 gives separation of at
most O(log n), as any rectangle of area n can be derived by a PCFG of size
O(log n).

But what about rectangles with a constant-sized alphabet? In this section
we achieve surprisingly strong separation of PCFGs over SASs and SSASs for
rectangular constant-label polyominoes, nearly matching the separation achieved

14 A. Winslow

for single-label general polyominoes. A separation ofΩ(n/ log n) is achieved using
an end-to-end binary counter polyomino, seen in Figure 6.

Lemma 9. There exists a τ = 1 SAS of size O(b) that produces a b-bit end-to-
end counter.

Lemma 10. For any PCFG G deriving a b-bit end-to-end counter, |G| = Ω(2b).

Theorem 5. The separation of PCFGs over τ = 1 SASs for constant-label rect-
angles is Ω(n/ log3 n).

6.3 Squares

The rectangular polyomino of the last section has exponential aspect ratio, sug-
gesting that this shape requires a large PCFG because it approximates a pat-
terned one-dimensional assemblies reminiscent of those in [7]. Creating a poly-
omino with better aspect ratio but significant separation is possible by extending
the polyomino’s labels vertically. For a square this approach gives a separation of
PCFGs over SASs of Ω(

√
n/ log n), non-trivial but far worse than the rectangle.

Our final result achieves Ω(n/ log n) separation of PCFGs over SASs for
squares using a block binary counter (seen in Figure 6). Each “row” of the counter
is actually a set of concentric square rings called a block.

Lemma 11. For even b, there exists a τ = 1 SAS of size O(b) that produces a
b-bit block counter.

Lemma 12. For any PCFG G deriving a b-bit block counter, |G| = Ω(2b).

Theorem 6. The separation of PCFGs over τ = 1 SASs for constant-label
squares is Ω(n/ log3 n).

6.4 Constant-glue constructions

Lemma 6 proved that any system S can be converted to a slightly larger system
(both in system size and scale) that simulates S. Applying this lemma to the
constructions of Section 6 yields identical results for constant-glue systems:

Theorem 7. All results in Section 6 hold for systems with O(1) glues.

7 Conclusion

As the results of this work show, efficient staged assembly systems may use a
number of techniques including, but not limited to, those described by local com-
bination of subassemblies as captured by PCFGs. It remains an open problem
to understand how the efficient assembly techniques of Section 5 and Section 6
relate to the general problem of optimally assembling arbitrary shapes.

Staged Self-Assembly and Polyomino Context-Free Grammars 15

Acknowledgements

We thank Benjamin Hescott and anonymous reviewers for helpful comments and
feedback that greatly improved the presentation of the paper.

References

1. L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang. Running time and program size
for self-assembled squares. In Proceedings of Symposium on Theory of Computing
(STOC), 2001.

2. S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz, R. T.
Schweller, S. M. Summers, and A. Winslow. Two hands are better than one (up
to constant factors): Self-assembly in the 2HAM vs. aTAM. In Proceedings of
International Symposium on Theoretical Aspects of Computer Science (STACS),
volume 20 of LIPIcs, pages 172–184, 2013.

3. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and a. shelat. The smallest grammar problem. IEEE Transactions on
Information Theory, 51(7):2554–2576, 2005.

4. H.L. Chen and D. Doty. Parallelism and time in hierarchical self-assembly. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012.

5. M. Cook, Y. Fu, and R. Schweller. Temperature 1 self-assembly: determinstic
assembly in 3D and probabilistic assembly in 2D. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2011.

6. E. D. Demaine, M. L. Demaine, S. Fekete, M. Ishaque, E. Rafalin, R. Schweller,
and D. Souvaine. Staged self-assembly: nanomanufacture of arbitrary shapes with
O(1) glues. Natural Computing, 7(3):347–370, 2008.

7. E. D. Demaine, S. Eisenstat, M. Ishaque, and A. Winslow. One-dimensional staged
self-assembly. Natural Computing, 2012.

8. D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers, and D. Woods.
Intrinsic universality in self-assembly. In Proceedings of Symposium on Theoretical
Aspects of Computer Science (STACS), volume 5 of LIPIcs, pages 275–286, 2010.

9. D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers, and D. Woods.
The tile assembly model is intrinsically universal. In Proceedings of Foundations
of Computer Science (FOCS), pages 302–310, 2012.

10. A. Jeż. Approximation of grammar-based compression via recompression. Techni-
cal report, arXiv, 2013.

11. E. Lehman. Approximation Algorithms for Grammar-Based Data Compression.
PhD thesis, MIT, 2002.

12. P. W. K. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares. In Proceedings of Symposium on Theory of Computing (STOC),
pages 459–468, 2000.

13. D. Soloveichik and E. Winfree. Complexity of self-assembled shapes. In Claudio
Ferretti, Giancarlo Mauri, and Claudio Zandron, editors, DNA 11, volume 3384 of
LNCS, pages 344–354. 2005.

14. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, Caltech, 1998.

	Staged Self-Assembly and Polyomino Context-Free Grammars

