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Abstract. We prove two tight bounds on the behavior of a model of self-
assembling particles introduced by Dabby and Chen (SODA 2012), called
insertion systems, where monomers insert themselves into the middle of
a growing linear polymer. First, we prove that the expressive power of
these systems is equal to context-free grammars, answering a question
posed by Dabby and Chen. Second, we prove that polymers of length

2Θ(k3/2) can be deterministically constructed by insertion systems of k
monomer types in O((logn)5/3) expected time, and that this is the best
possible in both the number of types and expected time.
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1 Introduction

In this work we study a theoretical model of algorithmic self-assembly, in which
simple particles aggregate in a distributed manner to carry out complex func-
tionality. Perhaps the the most well-studied theoretical model of algorithmic
self-assembly is the abstract Tile Assembly Model (aTAM) of Winfree [15] con-
sisting of square tiles irreversibly attach to a growing polyomino-shaped assem-
bly according to matching edge colors. This model is capable of Turing-universal
computation [15], self-simulation [5], and efficient assembly of general (scaled)
shapes [14] and squares [1,13]. Despite this power, the model is incapable of
assembling some shapes efficiently; a single row of n tiles requires n distinct
tile types and Ω(n log n) expected assembly time [2] and any shape with n tiles
requires Ω(

√
n) expected time to assemble [7].

Such a limitation may not seem so significant, except that a wide range of bio-
logical systems form complex assemblies in time polylogarithmic in the assembly
site, as Dabby and Chen [4] and Woods et al. [16] observe. These biological sys-
tems are capable of such growth because their particles (e.g. living cells) actively
carry out geometric reconfiguration. In the interest of both understanding natu-
rally occurring biological systems and creating synthetic systems with additional
capabilities, several models of active self-assembly have been proposed recently.
These include the graph grammars of Klavins et al. [9,10], the nubots model
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of Woods et al. [3,16], and the insertion systems of Dabby and Chen [4]. Both
graph grammars and nubots are capable of a topologically rich set of assemblies
and reconfigurations, but rely on stateful particles forming complex bond ar-
rangments. In contrast, insertion systems consist of stateless particles forming a
single chain of bonds. Indeed, all insertion systems are captured as a special case
of nubots in which a linear polymer is assembled via parallel insertion-like recon-
figurations, as in Theorem 5.1 of [17]. The simplicity of insertion systems makes
their implementation in matter a more immediately attainable goal; Dabby and
Chen [4] describe a direct implementation of these systems in DNA.

We are careful to make a distinction between active self-assembly, where as-
semblies undergo reconfiguration, and active tile self-assembly [6,8,11,12], where
tile-based assemblies change their bond structure. Active self-assembly enables
exponential assembly rates by enabling insertion of new particles throughout
the assembly, while active tile self-assembly does not: assemblies formed consist
of rigid tiles and the Ω(

√
n) expected-time lower bound of Keenan, Schweller,

Sherman, and Zhong [7] still applies.

1.1 Our results

We prove two tight bounds on the behavior of insertion systems. First, we con-
sider what languages can be expressed by insertion systems, i.e. correspond to
a set of polymers constructed by some insertion system. Dabby and Chen prove
that only context-free languages are expressible by insertion systems, and ask
whether every context-free language is indeed expressed by some insertion sys-
tem. We answer this question in the affirmative, and as a consequence prove
that the languages expressible by insertion systems are exactly the context-free
languages.

Second, we consider constructing the largest finite polymers as fast as pos-
sible. Dabby and Chen prove that insertion systems with k monomer types can

deterministically construct polymers of length n = 2Θ(
√
k) in O(log3 n) expected

time. We improve on both the polymer length and expected time by describ-

ing systems that deterministically constructing polymers of length 2Θ(k3/2) and
O((log n)5/3) expected time by utilizing novel aspects of insertion systems. We
also prove these systems are asymptotically optimal in both the length of the
polymers they construct and the construction time.

2 Definitions

2.1 Grammars

A context-free grammar G is a 4-tuple G = (Σ,Γ,∆, S). The sets Σ and Γ are
the terminal and non-terminal symbols of the grammar. The set ∆ consists of
production rules or simply rules, each of the form L→ R1R2 · · ·Rj with L ∈ Γ
and Ri ∈ Σ∪Γ . Finally, the symbol S ∈ Γ is a special start symbol. The language
of G, denoted L(G), is the set of strings that can be derived by starting with S,
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and repeatedly replacing a non-terminal symbol found on the left-hand side of
some rule in ∆ with the sequence of symbols on the right-hand side of the rule.
The size of G is |∆|, the number of rules in G. If every rule in ∆ is of the form
L → R1R2 or L → t, with R1R2 ∈ Γ and t ∈ Σ, then the grammar is said to
be in Chomsky normal form. Every context-free grammar can be converted to a
grammar in Chomsky normal form while increasing the size of grammar by at
most a factor of 2.

An integer-pair grammar, used in Section 3, is a context-free grammar in
Chomsky normal form such that each non-terminal symbol is an integer pair
(a, d), and each production rule has the form (a, d)→ (a, b)(c, d) or (a, d)→ t.

2.2 Insertion systems

An insertion system in the active self-assembly model of Dabby and Chen [4]
carries out the construction of a linear polymer consisting of constant length
monomers. A polymer grows incrementally by the insertion of a monomer at
an insertion site between two existing monomers in the polymer, according to
complementary bonding sites between the monomer and the insertion site.

An insertion system S is defined as a 4-tuple S = (Σ,∆,Q,R). The first
element, Σ, is a set of symbols. Each symbol s ∈ Σ has a complement s∗. We
denote the complement of a symbol s as s, i.e. s = s∗ and s∗ = s. The set
∆ is a set of monomer types, each assigned a concentration. Each monomer is
specified by a quadruple (a, b, c, d)+ or (a, b, c, d)−, where a, b, c, d ∈ Σ ∪ {s∗ :
s ∈ Σ}, and each concentration is a real number between 0 and 1. The sum
of all concentrations in ∆ must be at most 1. The two symbols Q = (a, b) and
R = (c, d) are special two-symbol monomers that together form the initiator of
S. It is required that either a = d or b = c. The size of S is |∆|, the number of
monomer types in S.

A polymer is a sequence of monomers Qm1m2 . . .mnR where mi ∈ ∆ such
that for each pair of adjacent monomers (w, x, a, b)(c, d, y, z), either a = d or
b = c. The length of a polymer is the number of monomers, including Q and R,
it contains. Each pair of adjacent monomer ends (a, b)(c, d) form an insertion
site. Monomers can be inserted into an insertion site (a, b)(c, d) (and the sequence
of monomers) according to the following rules (see Figure 1):

1. If a = d, then any monomer (b, e, f, c)+ can be inserted.
2. If b = c, then any monomer (e, a, d, f)− can be inserted.1

A monomer is inserted after time t, where t is an exponential random variable
with rate equal to the concentration of the monomer type. The set of all poly-
mers constructed by an insertion system is recursively defined as any polymer
constructed by inserting a monomer into a polymer constructed by the system,
beginning with the initiator. Note that the insertion rules guarantee by induction
that for every insertion site (a, b)(c, d), either a = d or b = c.

1 In [4], this rule is described as a monomer (d, f, e, a)− that is inserted into the
polymer as (e, a, d, f).
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Inserting (c, d∗, e∗, b∗)+ into (a∗, c∗)(b, a)
to yield (a∗, c∗)(c, d∗, e∗, b∗)(b, a):

Inserting (d∗, c, b∗, e∗)− into (c∗, a∗)(a, b)
to yield (c∗, a∗)(d∗, c, b∗, e∗)(a, b):

Fig. 1. A pictorial interpretation of the two insertion rules for monomers. Loosely based
on Figure 2 and corresponding DNA-based implementation of [4].

We say that a polymer is terminal if no monomer can be inserted into any
insertion site in the polymer, and that an insertion system deterministically
constructs a polymer P if every polymer constructed by the system is either P
or is non-terminal and has length less than that of P (i.e. can become P ). The
stringification of a polymer is the sequence of symbols in found on the polymer
from left to right, e.g. (a, b)(b∗, a, d, c)(c∗, a) has stringification abb∗adcc∗a. We
call the set of stringifications of all terminal polymers of an insertion system S
the language of S, denoted L(S).

2.3 Expressive power

Intuitively, a system expresses another if the terminal polymers or strings created
by the system “look” like the terminal polymers or strings created by the other
system. In the simplest instance, an integer-pair grammar G′ is said to express
a context-free grammar G if L(G′) = L(G). Similarly, a grammar G is said to
express an insertion system S if L(S) = L(G), i.e. if the set of stringifications of
the terminal polymers of S equals the language of G.

An insertion system S = (Σ′, ∆′, Q′, R′) is said to express a grammar G =
(Σ,Γ,∆, S) if there exists a function g : Σ′ ∪ {s∗ : s ∈ Σ′} → Σ ∪ {ε} such that
{g(s′1)g(s′2) . . . g(s′n) : s′1s

′
2 . . . s

′
n ∈ L(S)} = L(G). More precisely, we require
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that there exists a fixed integer κ such that for any substring s′i+1s
′
i+2 . . . s

′
i+κ

in a string in L(S), {g(s′i+1), g(s′i+2), . . . , g(s′i+κ)} 6= {ε}. That is, the insertion
system symbols mapping to grammar terminal symbols are evenly distributed
throughout the polymer. The requirement of a fixed integer κ prevents the possi-
bility of a polymer containing arbitrarily long and irregular regions of “garbage”
monomers.

3 The Expressive Power of Insertion Systems

Dabby and Chen proved that any insertion system has a context-free grammar
expressing it. They construct such a grammar by creating a non-terminal for
every possible pair of adjacent monomer types, and a production rule with this
left-hand side non-terminal for each monomer that can be inserted into the
insertion site formed by this pair. Here we give a reduction in the other direction,
resolving, in the affirmative, the question posed by Dabby and Chen of whether
context-free grammars and insertion systems have the same expressive power:

Theorem 1. For every context-free grammar G, there exists an insertion sys-
tem that expresses G.

The primary difficulty in proving Theorem 1 lies in developing a way to sim-
ulate the “complete” replacement that occurs during derivation with the “in-
complete” replacement that occurs when an insertion site is inserted into. For
instance, bcAbc becomes bcDDbc via a production rule A→ DD and A is com-
pletely replaced by DD. On the other hand, inserting a monomer (b∗, d, d, c)+

into a site (a, b)(c∗, a∗) yields the consecutive sites (a, b)(b∗, d) and (d, c)(c∗, a∗),
with (a, b)(c∗, a∗) only partially replaced – the left side of the first site and the
right side of second site together form the initial site. This behavior constrains
how replacement can be captured by insertion sites, and the κ parameter of the
definition of expression (Section 2.3) prevents eliminating the issue via additional
insertions.

We overcome this difficulty by proving Theorem 1 in two steps. First, we
prove that integer-pair grammars, a constrained type of grammar with incom-
plete replacements, are able to express context-free grammars (Lemma 1). Sec-
ond, we prove integer-pair grammars can be expressed by insertion systems
(Lemma 2).

Lemma 1. For every context-free grammar G, there exists an integer-pair gram-
mar that expresses G.

Lemma 2. For every integer-pair grammar G, there exists an insertion system
that expresses G.

Proof. Let G = (Σ,Γ,∆, S). The integer-pair grammar G is expressed by an
insertion system S = (Σ′, ∆′, Q′, R′) that we now define. Let Σ′ = {sa, sb :
(a, b) ∈ Γ} ∪ {u, x} ∪Σ. Let ∆′ = ∆′1 ∪∆′2 ∪∆′3 ∪∆′4, where

∆′1 = {(sb, u, s∗b , x)− : (a, d)→ (a, b)(c, d) ∈ ∆}
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∆′2 = {(sa, sb, s∗c , s∗d)+ : (a, d)→ (a, b)(c, d) ∈ ∆}

∆′3 = {(x, sc, u∗, s∗c)− : (a, d)→ (a, b)(c, d) ∈ ∆}

∆′4 = {(sa, t, x, s∗d)+ : (a, d)→ t ∈ ∆}

We give each monomer type equal concentration, although the precise con-
centrations are not important for expressive power. Let Q′ = (u∗, a∗) and
R′ = (b, u), where S = (a, b).

Insertion types. We start by proving that for any polymer constructed by
S, only the following types of insertions of a monomer m2 between two adjacent
monomers m1m3 are possible:

1. m1 ∈ ∆′2, m2 ∈ ∆′3, m3 ∈ ∆′1
2. m1 ∈ ∆′3, m2 ∈ ∆′2 ∪∆′4, m3 ∈ ∆′1
3. m1 ∈ ∆′3, m2 ∈ ∆′1, m3 ∈ ∆′2

Moreover, we claim that for every adjacent m1m3 pair satisfying one of these
conditions, an insertion is possible. That is, there is a monomer m2 that can be
inserted, necessarily from the monomer subset specified.

Consider each possible combination of m1 ∈ ∆′i and m3 ∈ ∆′j , respec-
tively, with i, j ∈ {1, 2, 3, 4}. Observe that for an insertion to occur at in-
sertion site (a, b)(c, d), the symbols a, b, c, and d must each occur on some
monomer. Then since x∗ and t∗ do not appear on any monomers, any i, j with
i ∈ {1, 4} or j ∈ {3, 4} cannot occur. This leaves monomer pairs (∆′i, ∆

′
j) with

(i, j) ∈ {(2, 1), (2, 2), (3, 1), (3, 2)}.
Insertion sites between (∆′2, ∆

′
1) pairs have the form (s∗c , s

∗
d)(sb, u), so an

inserted monomer must have the form (se, sc, s
∗
u, sf )− and is in ∆′3. An insertion

site (s∗c , s
∗
d)(sb, u) implies a rule of the form (e, d) → (e, f)(c, d) in ∆, so there

exists a monomer (x, sc, u
∗, s∗c)

− ∈ ∆′3 that can be inserted.
Insertion sites between (∆′3, ∆

′
2) pairs have the form (u∗, s∗c)(sa, sb), so an

inserted monomer must have the form ( , u, s∗b , )− and thus is in ∆′1. An in-
sertion site (u∗, s∗c)(sa, sb) implies a rule of the form (a, d)→ (a, b)(e, d) in Γ , so
there exists a monomer (sb, u, s

∗
b , x)− ∈ ∆′1 that can be inserted.

Insertion sites between (∆′2, ∆
′
2) pairs can only occur once a monomer m2 ∈

∆′2 has been inserted between a pair of adjacent monomers m1m3 with either
m1 ∈ ∆′2 or m3 ∈ ∆′2, but not both. But we just proved that all such such
possible insertions only permit m2 ∈ ∆′3 ∪ ∆′1. Moreover, the initial insertion
site between Q′ and R′ has the form (u∗, s∗a)(sb, u) of an insertion site with
m1 ∈ ∆′3 and m3 ∈ ∆′1. So no pair of adjacent monomers m1m3 are ever both
from ∆′2 and no insertion site between (∆′2, ∆

′
2) pairs can ever exist.

Insertion sites between (∆′3, ∆
′
1) pairs have the form (u∗, s∗c)(sb, u), so an

inserted monomer must have the form (sc, , , b∗)+ or ( , u, u∗, )− and is in
∆′2 or ∆′4. We show by induction that for each such insertion site (u∗, s∗c)(sb, u)
that (c, b) ∈ Γ . First, observe that this is true for the insertion site (u∗, s∗a)(sb, u)
between Q′ and R′, since (a, b) = S ∈ Γ . Next, suppose this is true for all
insertion sites of some polymer and a monomer m2 ∈ ∆′2 ∪ ∆′4 is about to
be inserted into the polymer between monomers from ∆′3 and ∆′1. Inserting a
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monomer m2 ∈ ∆′4 only reduces the set of insertion sites between monomers in
∆′3 and ∆′1, and the inductive hypothesis holds. Inserting a monomer m2 ∈ ∆′2
induces new (∆′3, ∆

′
2) and (∆′2, ∆

′
1) insertion site pairs betweenm1m2 andm2m3.

These pairs must accept two monomers m4 ∈ ∆1 and m5 ∈ ∆3, inducing a
sequence of monomers m1m4m2m5m3 with adjacent pairs (∆′3, ∆

′
1), (∆′1, ∆

′
2),

(∆′2, ∆
′
3), (∆′3, ∆

′
1). Only the first and last pairs permit insertion and both are

(∆′3, ∆
′
1) pairs.

Now consider the details of the three insertions yielding m1m4m2m5m3,
starting withm1m3. The initial insertion sitem1m3 must have the form (u∗, s∗a)(sd, u).
So the sequence of insertions has the following form, with the last two insertions
interchangeable. The symbol � is used to indicate the site being modified and
the inserted monomer shown in bold:

(u∗, s∗a) � (sd, u)

(u∗, s∗a) � (sa, sb, s∗c , s∗d)(sd, u)

(u∗, s∗a)(sb, u, s
∗
b , x)(sa, sb, s

∗
c , s
∗
d) � (sd, u)

(u∗, s∗a)(sb, u, s
∗
b , x)(sa, sb, s

∗
c , s
∗
d)(x, sc, u

∗, s∗c)(sd, u)

The two resulting (∆′3, ∆
′
1) pair insertion sites are (u∗, s∗a)(sb, u) and (u∗, s∗c)(sd, u).

Assume, by induction, that the monomer m2 must exist. So there is a rule
(a, d)→ (a, b)(c, d) ∈ ∆ and (a, b), (c, d) ∈ Γ , fulfilling the inductive hypothesis.
So for every insertion site (u∗, s∗c)(sb, u) between a (∆′3, ∆

′
1) pair there exists a

non-terminal (c, b) ∈ Γ . So for every adjacent monomer pairm1m3 withm1 ∈ ∆′3
and m3 ∈ ∆′1, there exists a monomer m2 ∈ ∆′2∪∆′4 that can be inserted between
m1 and m2.

Partial derivations and terminal polymers. Next, consider the sequence
of insertion sites between (∆′3, ∆

′
1) pairs in a polymer constructed by a modified

version of S lacking the monomers of ∆′4. We claim that there is a constructed
polymer with a sequence (u∗, s∗a1)(sb1 , u), (u∗, s∗a2)(sb2 , u), . . . , (u∗, s∗ai)(sbi , u) of
these insertion sites if and only if there is a partial derivation (a1, b1)(a2, b2) . . . (ai, bi)
of a string in L(G). This follows directly from the previous proof by observing
that two new adjacent (∆′3, ∆

′
1) pair insertion sites (u∗, s∗a)(sb, u) and (u∗, s∗c)(sd, u)

can replace a (∆′3, ∆
′
1) pair insertion site if and only if there exists a rule

(a, d)→ (a, b)(c, d) ∈ ∆.
Observe that any string in L(G) can be derived by first deriving a partial

derivation containing only non-terminals, then applying only rules of the form
(a, d)→ t. Similarly, since the monomers of∆′4 never form half of a valid insertion
site, any terminal polymer of S can be constructed by first generating a polymer
containing only monomers in ∆′1 ∪∆′2 ∪∆′3, then only inserting monomers from
∆′4. Also note that the types of insertions possible in S imply that in any terminal
polymer, any triple of adjacent monomers m1m2m3 with m1 ∈ ∆′i, m2 ∈ ∆′j ,
and m3 ∈ ∆′k, that (i, j, k) ∈ {(4, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 1)}, with the first
and last monomers of the polymer in ∆′4.

Expression. Define the following piecewise function g : Σ′∪{s∗ : s ∈ Σ′} →
Σ ∪ {ε} that maps to ε except for the second symbols of monomers in ∆′4.
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g(s) =

{
t, if t ∈ Σ
ε, otherwise

Observe that every string in L(S) has length 2+ 4 · (4n−3) +2 = 16n−8 for
some n ≥ 0. Also, for each string s′1s

′
2 . . . s

′
16n−8 ∈ L(S), g(s′1)g(s′2) . . . g(s′16n−8) =

ε3t1ε
16t2ε

16 . . . tnε
5. There is a terminal polymer with stringification in L(S)

yielding the sequence s1s2 . . . sn if and only if the polymer can be constructed
by first generating a terminal polymer excluding ∆′4 monomers with a sequence
of (∆′3, ∆

′
1) insertion pairs (a1, b1)(a2, b2) . . . (an, bn) followed by a sequence of

insertions of monomers from ∆′4 with second symbols t1t2 . . . tn. Such a gener-
ation is possible if and only if (a1, b1)(a2, b2) . . . (an, bn) is a partial derivation
of a string in L(G) and (a1, b1) → t1, (a2, b2) → t2, . . . , (an, bn) → tn ∈ ∆. So
applying the function g to the stringifications of the terminal polymers of S gives
L(G), i.e. L(S) = L(G). Moreover, the second symbol in every fourth monomer
in a terminal polymer of S maps to a symbol of Σ using g. So S expresses G
with the function g and κ = 16. ut

4 Positive Results for Polymer Growth

Dabby and Chen also consider the size and speed of constructing finite polymers.
They give a construction achieving the following result:

Theorem 2 ([4]). For any positive integer r, there exists an insertion system
with O(r2) monomer types that deterministically constructs a polymer of length
n = 2Θ(r) in O(log3 n) expected time.

We improve on this construction significantly in both polymer length and
expected running time. In Section 5 we prove that our construction is the best
possible with respect to both the polymer length and construction time.

Theorem 3. For any positive integer r, there exists an insertion system with
O(r2) monomer types that deterministically constructs a polymer of length n =

2Θ(r3) in O((log n)5/3) expected time.

Proof. We give a constructive proof. The approach is to implement a three vari-
able counter where each variable ranges over the values 0 to r, effectively carrying
out the execution of a triple for-loop. Insertion sites of the form (sa, sb)(sc, s

∗
a)

are used to encode the state of the counter, where a, b, and c are the variables
of the outer, inner, and middle loops, respectively.

1. (Inner): If 0 ≤ b < r, then (sa, sb)(sc, s
∗
a) becomes (sa, sb+1)(sc, s

∗
a).

2. (Middle): If b = r and 0 ≤ c < r, then (sa, sb)(sc, s
∗
a) becomes (sa, s0)(sc+1, s

∗
a).

3. (Outer): If b = c = r and 0 ≤ a < r, then (sa, sb)(sc, s
∗
a) becomes (sa+1, s0)(s0, s

∗
a+1).

A site is modified by a sequence of monomer insertions that yields a new
usable site where all other sites created by the insertion sequence are unusable.
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For instance, we modify a site (sa, sb)(sc, s
∗
a) to become (sa, sd)(sc, s

∗
a), written

(sa, sb)(sc, s
∗
a) → (sa, sd)(sc, s

∗
a), by adding the monomer types (s∗b , x, u, s

∗
c)

+

and (x, u∗, sa, sb)− to the system, where x is a special symbol whose complement
is not found on any monomer. These two monomer types cause the following
sequence of insertions, using � to indicate the site being modified and the inserted
monomer shown in bold:

(sa, sb) � (sc, s
∗
a)

(sa, sb)(s
∗
b , x, u, s

∗
c) � (sc, s

∗
a)

(sa, sb)(s
∗
b , x, u, s

∗
c)(x,u

∗, sa, sd) � (sc, s
∗
a)

We call this simple modification, where a single symbol in the insertion site
is replaced with another symbol, a replacement. Four types of replacements, seen
in Table 1, can each be implemented by a pair of corresponding monomers.

Replacement Monomers

(sa, sb)(sc, s
∗
a) → (sa, sd)(sc, s

∗
a) (s∗b , x, u, s

∗
c)

+, (x, u∗, sa, sd)
−

(sa, sb)(sc, s
∗
a) → (sa, sb)(sd, s

∗
a) (s∗b , u, x, s

∗
c)

+, (sd, s
∗
a, u

∗, x)−

(sb, sa)(s∗a, sc) → (sd, sa)(s∗a, sc) (x, s∗b , s
∗
c , u)−, (u∗, x, sd, sa)+

(sb, sa)(s∗a, sc) → (sb, sa)(s∗a, sd) (u, s∗b , s
∗
c , x)−, (s∗a, sd, x, u

∗)+

Table 1. The four types of replacement steps and monomer pairs that implement
them. The symbol u can be any symbol, and x is a special symbol whose complement
does not appear on any monomer.

Each of the three increment types are implemented using a sequence of site
modifications. The resulting triple for-loop carries out a sequence of Θ(r3) inser-

tions, constructing a Θ(r3)-length polymer. A 2Θ(r3)-length polymer is achieved
by simultaneously duplicating each site during each inner increment. Because the
for-loop runs for Θ(r3) steps and duplicates at a constant fraction of these steps
(those with 0 ≤ b < r), the number of counters reaching the final a = b = c = r

state is 2Θ(r3). In the remainder of the proof, we detail the implementation of
each increment type, starting with the simplest: middle increments.

Middle increment. A middle increment of a site (sa, sb)(sc, s
∗
a) occurs when

the site has the form (sa, sr)(sc, s
∗
a) with 0 ≤ c < r, performing the modification

(sa, sr)(sc, s
∗
a) → (sa, s0)(sc+1, s

∗
a). We implement middle increments using a

sequence of three replacements:

(sa, sr)(sc, s
∗
a)

1−−→ (sa, sr)(sf1(c), s
∗
a)

2−−→ (sa, s0)(sf1(c), s
∗
a)

3−−→ (sa, s0)(sc+1, s
∗
a)

where fi(n) = n + 2ir2. The use of f is to avoid unintended interactions
between monomers, since for any n1, n2 with 0 ≤ n1, n2 ≤ r, fi(n1) 6= fj(n2) for
all i 6= j. Compiling this sequence of replacements into monomer types gives the
following set:
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1. (Step 1): (s∗r , sf2(c), x, s
∗
c)

+ and (sf1(c), s
∗
a, s
∗
f2(c)

, x)−.

2. (Step 2): (s∗r , x, sf3(c), s
∗
f1(c)

)+ and (x, s∗f3(c), sa, s0)−.

3. (Step 3): (s∗0, sf4(c+1), x, s
∗
f1(c)

)+ and (sc+1, s
∗
a, s
∗
f4(c+1), x)−.

Since each inserted monomer has an instance of x, all other insertion sites
created are unusable. This is true of the insertions used for outer increments and
duplications as well.

Outer increment. An outer increment of the site (sa, sb)(sc, s
∗
a) occurs

when the site has the form (sa, sr)(sr, s
∗
a) with 0 ≤ a < r. We implement this

step using a two-phase sequence of three (regular) replacements and a special
quadruple replacement (Step 3):

(sa, sr)(sr, s
∗
a)

1−−→ (sa, sf5(a))(sr, s
∗
a)

2−−→ (sa, sf5(a))(s
∗
f5(a)

, s∗a)

(sa, sf5(a))(s
∗
f5(a)

, s∗a)
3−−→ (sa+1, sf5(0))(s0, s

∗
a+1)

4−−→ (sa+1, s0)(s0, s
∗
a+1)

At each step, a (necessary) complementary pair of symbols is maintained,
which results in a sequence of more than 4 replacements. As with inner and
middle increments, we compile replacement steps 1, 2, and 4 into monomers
using Table 1. Step 3 is a special pair of monomers.

1. (Step 1): (s∗r , x, sf6(r), s
∗
r)

+ and (x, s∗f6(r), sa, sf5(a))
−.

2. (Step 2): (s∗f5(a), s
∗
f7(r)

, x, s∗r)
+ and (s∗f5(a), s

∗
a, sf7(r), x)−.

3. (Step 3): (s∗f5(a), x, sa+1, sf5(a))
+ and (s0, s

∗
a+1, sa, x)−.

4. (Step 4): (s∗f5(a), x, sf7(r), s
∗
0)+ and (x, s∗f7(r), sa+1, s0)−.

Inner increment. The inner increment has two phases. The first phase per-
forms the modification (sa, sb)(sc, s

∗
a) → (sa, sb)(sf8(c), s

∗
a) . . . (sa, sb+1)(sc, s

∗
a),

yielding an incremented version of the original site and one other site. The sec-
ond phase is (sa, sb)(sf8(c), s

∗
a)→ (sa, sb+1)(sc, a

∗), transforming the second site
into an incremented version of the original site.

For the first phase, we use the three monomers (s∗b , sf8(c), sf8(b+1), s
∗
c)

+,
(sf8(c), s

∗
a, s
∗
f8(c)

, x)−, and (x, s∗f8(b+1), sa, sb+1)− and call the entire phase Step 1.

The site (sa, sb)(sf8(c), s
∗
a) is transformed into (sa, sb+1)(sc, s

∗
a) by a sequence of

replacement steps:

(sa, sb)(sf8(c), s
∗
a)

2−−→ (sa, sf9(b))(sf8(c), s
∗
a)

3−−→ (sa, sf9(b))(sc, s
∗
a)

4−−→ (sa, sb+1)(sc, s
∗
a)

As with previous sequences of replacement steps, we compile this sequence
into a set of monomers:

1. (Step 2): (s∗b , x, sf10(b), s
∗
f8(c)

)+ and (x, s∗f10(b), sa, sf9(b))
−.

2. (Step 3): (s∗f9(b), sf11(c), x, s
∗
f8(c)

)+ and (sc, s
∗
a, s
∗
f11(c)

, x)−.

3. (Step 4): (s∗f9(b), x, sf12(b+1), s
∗
c)

+ and (x, s∗f12(b+1), sa, sb+1)−.

10



When combined, the two phases of duplication modify (sa, sb)(sc, s
∗
a) to be-

come (sa, sb+1)(sc, s
∗
a) . . . (sa, sb+1)(sc, s

∗
a), where all sites between the dupli-

cated sites are unusable.
Putting it together. The system starts with the intiator (s0, s0)(s0, s

∗
0).

Each increment of the counter occurs either through a middle increment, outer
increment, or a duplication. There are at most (r + 1)2 monomer types in each
family and O(r2) monomer types total. The size Pi of a subpolymer with an
initiator encoding some value i between 0 and (r + 1)3 − 1 can be bounded by
2Pi+2 + 9 ≤ Pi2Pi+1 + 9 with P(r+1)3−2 > 0. So P0, the size of the terminal

polymer, is 2Θ(r3).
Running time. Define the concentration of each monomer type to be equal.

There are less than 39r2 monomer types, so each monomer type has concentra-
tion at least 1/(39r2). The polymer is complete as soon as every insertion site
has been modified to be (r, r)(r, r∗) and the monomer (s∗r , x, sf7(r), s

∗
r)

+ has been

inserted. There are fewer than 28r
3

such insertions, and each insertion can oc-
cur once at most 9 · 8r3 = 72r3 previous insertions have occurred. So an upper
bound on the expected time Tr for each such insertion is described as a sum of
72r3 random variables, each with expected time 39r2. The Chernoff bound for
exponential random variables implies Prob[Tr > 39r2 · 72r3(1 + δ)] ≤ e−r

5δ/2

for all δ ≥ 2 and TSr , the total running time of the system, has Prob[TSr >

39r2 · 72r3(1 + δ)] ≤ 2−r
5δ/4 for all δ ≥ 32. So the expected value of TSr , the

construction time, is O(r5) = O((log n)5/3) with an exponentially decaying tail
probability. ut

5 Negative Results for Polymer Growth

Here we prove that our system constructs polymers using an optimal number of
monomer types and in optimal expected time.

Theorem 4. Any polymer deterministically constructed by an insertion system

with k monomer types has length 2O(k3/2).

Theorem 5. Deterministically constructing a polymer of length n takes Ω((log n)5/3)
expected time.
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