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Abstract. We show that the 11 hexomino nets of the unit cube (each
used an unlimited number of times) can pack disjointly into an m × n
rectangle and cover all but a constant c number of unit squares, where
4 ≤ c ≤ 14 for all integers m,n ≥ 2. On the other hand, the nets of the
dicube (two unit cubes) can be exactly packed into some rectangles.
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1 Introduction

Packing with polyominoes. Polyominoes5 have attracted the attention of math-
ematicians, computer scientists, and amateur researchers since their invention
by Solomon Golomb in 1954 [9,11] and popularization by Martin Gardner since
1959 [7,8]. Since this early beginning, the primary focus has been to study pack-
ing of polyominoes into “nice” shapes. For example, Golomb’s original paper [9]
studies which subsets of the 8×8 checkerboard can and cannot be exactly packed
with dominoes, trominoes, and/or tetrominoes, possibly with a small number of
monominoes. Gardner’s original article [7] includes a proof by Golomb that the
35 hexominoes (each used exactly once) cannot exactly pack any rectangle, even
though there are six rectangles with the proper area. Gardner wrote: “I seriously
considered offering $1,000 to the first reader who succeeded in constructing one
of these six rectangles, but the appalling thought of hours that might be wasted
on the challenge forced me to relent.” In this spirit, the Eternity puzzle is a 209-
piece polyomino-like packing puzzle that awarded £1 million to the first solvers,
Alex Selby and Oliver Riordan, one year after its release [16,20].

5 An n-omino or polyomino is an edge-to-edge joining of n unit squares. The special
cases n = 1, 2, 3, 4, 5, 6 are called monominoes, dominoes, trominoes, tetrominoes,
pentominoes, and hexominoes, respectively.
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Packing with hexominoes. In this paper, we study packing of hexominoes into
rectangles. In 1966, Golomb [10] proved that nine hexomino shapes can each
(used an unlimited number of times) exactly pack some finite rectangle, while
25 hexomino shapes can each exactly pack infinite forms of rectangles (three-
sided half-strips, four-sided Ls, two-sided strips, or the entire plane) but cannot
exactly pack any finite rectangle. As described by Gardner [8], these results left
unsolved exactly one hexomino shape (of 35); 21 years later, blind software engi-
neer Dahlke [5] used computer search to find an exact packing of this hexomino
shape into the smallest possible rectangle, 23× 24. Every exact packing of hex-
ominoes into some finite rectangle leads to exact packings into infinitely many
finite rectangles (by repetition). Klarner [14] studied which rectangles can be
exactly packed by a single polyomino shape. Bos [2] gave several exact packings
of squares by two hexomino shapes (each used an unlimited number of times).
See the extensive bibliography on “rectifiable polyominoes” [18]. In the modern
Internet era, many websites are devoted to exact packings of nice shapes by
various sets of hexominoes [3,4,6,17,18,21].

Cube nets. We focus on the eleven hexominoes that fold into a unit cube, as
shown in Fig. 1. More precisely, an edge unfolding of a cube is a way to cut
some edges and unfold the remaining edges to produce a flat nonoverlapping
polygon, called a net. Only eleven of the 35 hexominoes are nets of the cube.
For convenience, we name them alphabetically from A to K (different from the
usual labeling of hexominoes).

A B C D E

F G H I J K

Fig. 1. Eleven cube nets labeled from A to K (as in [12]).

What about packings by cube nets? A recent paper [1] considered exact
packing of cube nets (each used an unlimited number of times) onto the surface
of a (larger) cube. For packing into rectangles, none of the eleven cube nets are
among the ten hexomino shapes that by themselves can exactly pack a rectangle.
More surprising is that no combination of cube nets can exactly pack a rectangle:

Theorem 1 (Folklore, proved in [12,13]). No rectangle can be exactly packed
by nets of the cube.

Near-exact packing. Therefore, we relax the goal, and aim instead for “near-
exact” packings of cube nets into various rectangles. In other words, we aim to
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find packings that have no overlap and cover all but a few 1×1 holes or uncovered
cells. Specifically, we give nearly tight bounds on the following problem:

For all positive integers m,n, what is the maximum number of cube nets
that can be packed into an m× n rectangle, or equivalently, what is the
fewest uncovered cells that can remain?

This specific problem has been studied extensively for smallm,n. It is known,
as folklore, that the minimum-area rectangle into which all 11 nets can pack is
11 × 7 = 77. In perhaps the first work on the problem, Odawara [15] presents
several packings and gives a table of results that he could achieve up to 12 ×
12. Most intriguingly, he conjectured that every rectangle with m,n ≥ 7 can
have all but between 6 and 11 squares covered by packing cube nets. Inoha et
al. [12] improved and extended these results by exhaustive computer search using
BurrTools [19]. Table 1 summarizes all of the results now known to be optimal.

Table 1. Known optimal values of uncovered cells in each size m× n of rectangles for
2 ≤ n ≤ m ≤ 14. The value is 12 only for rectangles 6× 6 and 12× 6.

Our results. Our main result is a proof of a slightly weaker conjecture: every
m × n rectangle with m,n ≥ 2 can be packed by cube nets leaving at most 14
uncovered cells (Section 2). (1×n rectangles cannot fit any cube net from Fig. 1,
so these are all rectangles of interest.) Such a worst-case upper bound cannot be
improved beyond 12, as the 6× 6 and 6× 12 rectangles require that many holes,
so our upper bound of 14 is close to tight. We also prove a stronger form of
Theorem 1: every m×n rectangle with m,n ≥ 2 must leave at least 4 uncovered
cells (Section 3). This best-case lower bound is tight because 2 × 8, 4 × 7, etc.
rectangles can be packed with just 4 uncovered cells. By contrast, we show that
the nets of a dicube (two cubes glued face-to-face) behave very differently: they
admit an exact packing of some rectangle, and thus infinitely many rectangles
(Section 4).

BurrTools. BurrTools [19] is a powerful software tool for exhaustively exploring
packings of a specified set of shapes into a specified shape (e.g., a rectangle).
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Fig. 2 shows a snapshot of the software. We used BurrTools extensively on
constant-size instances to search for patterns in the packings which we then
generalized by hand into the infinite family of packings presented in Section 2.

Fig. 2. A snapshot of BurrTools.

2 Upper Bound on Uncovered Cells

In this section, we prove the following theorem, which upper bounds the worst-
case number of uncovered cells when we pack nets of the cube in a rectangle.

Theorem 2. Let m,n ∈ N. If m ≥ n ≥ 2, then nets of the cube can pack an
m× n rectangle leaving at most 14 uncovered cells.

We prove this theorem by constructing packing patterns that satisfy the
stated condition. We split into four cases according to the size m × n of the
rectangle: (i) {≥ 8} × {≥ 6} (i.e., 8 × 6 or larger); (ii) {6, 7} × {6, 7}; (iii) {≥
6}×{2, 3, 4, 5}; (iv) {2, 3, 4, 5}×{2, 3, 4, 5} (i.e., 5× 5 or smaller). Each of these
cases corresponds to the subsequent lemmas.

Lemma 1. Rectangles of dimensions m×n with m ≥ 8 and n ≥ 6 (and m ≥ n)
can be packed with nets of the cube leaving at most 14 cells uncovered.

Proof. The proof is constructive, broken into several cases based around small
modifications to two general packing format seen in Fig. 3. The two top-level
cases are rectangles of even (6i + i′ with i′ ∈ {0, 2, 4}) and odd (6i + i′ with
i′ ∈ {1, 3, 5}) width. Notice that this combination can realize any width of 6 or
larger. We also remark that these figures illustrates how we start packing the top
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6i+ i′, i′ ∈ {0, 2, 4}

6 + 3j

j′, j′ ∈ {0, 2, 4}

6i+ i′, i′ ∈ {1, 3, 5}

Fig. 3. The approach to packing rectangles with nets of the cube.

part of a rectangle. Each case is further broken into subcases based on height
6 + 3j + j′ with j′ equal to 0, 2, or 4.

Each subcase (combination of i′ and j′ values) is considered separately. For
compactness, the arrangement of the upper portion of each packing is excluded
unless it does not agree with the arrangement seen in Fig. 3. Figs. 4 and 5 contain
the subcases with i′ ∈ {0, 2, 4} and i′ ∈ {1, 3, 5}, respectively.

The vertical dimension is assumed to be equal to 6 + 3j + j′ with j ∈
{0, 2, 4, . . .} and j′ ∈ {0, 2, 4}. Notice again that any integer at least 8 can be
written in such a form. Inspection of the arrangement of each subcase is suffi-
cient to observe that every subcase accommodates all values of i ≥ 1 (i.e. widths
of 6i+ i′ for some subset of i′ and all i ≥ 1).

In the even-width case, we first see that there are 6 cells remain uncovered
in the top region (Fig. 3, left), which implies that if suffices to show that we
can cover the other (especially the bottom) region with at most 8 cells remain
uncovered. We can confirm this fact in Fig. 4, except the case that the width is
6i+i′ with i′ = 4 and the height is 6+3j+j′ with j′ = 4. This case is considered
separately, and is covered with 10 uncovered cells in total (Fig. 4, bottom right).

In the odd-width case, we see similarly that there are 3 cells remain uncovered
in the top region (Fig. 3, right), which implies that if suffices to show that we can
cover the other region with at most 11 cells remain uncovered. We can confirm
all the cases in Fig. 5. This completes the proof. ⊓⊔

Lemma 2. Rectangles of dimensions m× n with 7 ≥ m ≥ n ≥ 6 can be packed
with nets of the cube leaving at most 12 cells uncovered.

Proof. Fig. 6 shows such packings found using BurrTools. ⊓⊔

Lemma 3. Rectangles of dimensions m × n with m ≥ 6 and 5 ≥ n ≥ 2 can be
packed with nets of the cube leaving at most 12 cells uncovered.



6 E. D. Demaine et al.

j′ = 0

6i+ i′, i′ = 0

j′ = 2

6i+ i′, i′ = 2

j′ = 2

6i+ i′, i′ = 4

j′ = 2

j′ = 4

6i+ i′, i′ = 2

j′ = 4

6i+ i′, i′ = 4

6i+ i′, i′ = 0

j′ = 4

6i+ i′, i′ ∈ {0, 2, 4}

Fig. 4. The subcases of packing even-width rectangles with nets of the cube.

Proof. Fig. 7 shows packings for each subcase of m ≥ 6. In each subcase, at most
5 cells are uncovered at the right end of the rectangle, and at most 7 cells are
left uncovered at the left end of the rectangle, for a total of at most 12 (< 14)
cells uncovered. ⊓⊔

Lemma 4. Rectangles of dimensions m× n with 5 ≥ m ≥ n ≥ 2 can be packed
with nets of the cube leaving at most 10 cells uncovered.

Proof. The cases {2, 3, 4, 5} × 2 and 3 × {2, 3} have area ≤ 10, so the empty
packing suffices. The remaining cases are 4 × {3, 4} and 5 × {3, 4, 5}. Refer to
Fig. 1. Any single net other than C fits in a 4×3 rectangle and occupies 6 squares,
which is a sufficient packing for 4 × {3, 4} (leaving 6 and 10 cells uncovered,
respectively) and for 5× 3 (leaving 9 cells uncovered). Case 5× 4 can be solved
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j′ = 0

6i+ i′, i′ = 1

j′ = 2

6i+ i′, i′ = 3

j′ = 2

6i+ i′, i′ = 5

j′ = 2

j′ = 4

6i+ i′, i′ = 3

j′ = 4

6i+ i′, i′ = 5

6i+ i′, i′ = 1

j′ = 4
6i+ i′, i′ ∈ {1, 3, 5}

Fig. 5. The subcases of packing odd-width rectangles with nets of the cube.

6× 6 6× 7 7× 7

Fig. 6. Packings of 6× 6, 6× 7, and 7× 7 rectangles by cube nets leaving 12, 6, and 7
uncovered cells, respectively.

by stacking two C nets vertically (leaving 8 cells uncovered). Case 5 × 5 can
be solved by stacking a C above a D (or A) above another C (leaving 7 cells
uncovered). ⊓⊔

The previous four lemmas together establish Theorem 2, that 14 is an upper
bound on the number of uncovered cells for m× n with m ≥ n ≥ 2.
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m > 5

n = 2

m > 5

n = 3

m > 5

n = 4

m > 5

n = 5

m mod 3 = 2

m mod 2 = 0 m mod 2 = 1

m mod 3 = 1m mod 3 = 0 m mod 3 = 2

m mod 3 = 0 m mod 3 = 1

m mod 6 = 0 m mod 6 = 1 m mod 6 = 2

m mod 6 = 3 m mod 6 = 4 m mod 6 = 5

Fig. 7. The subcases of packing rectangles of dimensions m ≥ 6 and 5 ≥ n ≥ 2 with
nets of the cube.

3 Lower Bound on Uncovered Cells

In this section, we show the following theorem, which tells us the best case
number of uncovered cells when we pack nets of the cube in a rectangle. We
cannot do better than leaving 4 uncovered cells for a rectangle of any dimension.

Theorem 3. Let m,n ∈ N. If {m,n} ̸∈ {{1, 1}, {1, 2}, {1, 3}}, then any packing
of nets of the cube into an m× n rectangle leaves at least 4 uncovered cells.

We prove this theorem by dividing it into the following two cases by the sizes
of rectangles, that is, (i) 6× 2, or larger, and (ii) 5× 5, or smaller. Each of these
corresponds to the subsequent lemmas. Subsequent discussions build on ideas
in [12,13].

Lemma 5. For rectangles of dimensions m×n with m ≥ 6 and n ≥ 2 (m ≥ n),
any packing of nets of the cube leaves at least 4 uncovered cells.

Proof. Each of four corners of an empty rectangle is an uncovered cell. We first
notice that nets H and I cannot cover a corner cell without protrusion. Observe
that any covering of this cell via all possible placements of nets of the cube (seen
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CBA A J K

D E F G

H and I cannot
cover the corner cell.

Fig. 8. All possible coverings of the corner of a rectangle by nets of the cube.

in Fig. 8, up to symmetry) leaves new uncovered cells that are either uncoverable
(red X’s in Fig. 8) or problematic (orange X’s in Fig. 8).

Placements that do not create uncoverable cells leave problematic cells in
only two arrangements, seen in Fig. 9. We call these arrangements A/C/J/K
and B, after the two sets of nets of the cube that create them.

BA/C/J/K

Fig. 9. The two cases of remaining problematic cells after covering the corner of a
rectangle by a net of the cube.

For the two problematic cell arrangements A/C/J/K and B in Fig. 9, only
four net placements suffice to cover both problematic cells, seen in Fig. 10.

B ⇒ BA/C/J/K ⇒ A/C/J/K B ⇒ A/C/J/K B ⇒ A/C/J/K

Fig. 10. The four cases of covering both problematic cells (with any number of nets).
The blue X’s denote new problematic cells created by the new nets.

Notice that all four development placements create two new problematic
cells either in the arrangement A/C/J/K or B. Thus covering both problematic
cells “propagates” to a new pair of problematic cells in one of the same two
arrangements A/C/J/K or B. These problematic cell propagations follow one of
the rectangle sides incident to the corner where the first pair of problematic cells
were placed.

If such a propagation continues, it eventually reaches another corner of the
rectangle (Fig. 11) or a pair of problematic cells propagated from an adjacent
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A/C/J/K BA/C/J/K A/C/J/K B

Fig. 11. The cases of a problematic cell arrangement near a corner. In each case, at
least two cells are left uncovered.

corner (Fig. 12). In both cases, at least one of the problematic cells is left un-
covered.

A/C/J/K ×2 A/C/J/K ×2 A/C/J/K ×2

A/C/J/K, B A/C/J/K, B A/C/J/K, B

Fig. 12. The cases of a problematic cell arrangement meeting another problematic cell
arrangement (each propagated from a different corner). In each case, at least one cell
of each arrangement is left uncovered.

In summary, the key observations of the proof are:

– A rectangle has “four” corners.
– Each corner has an uncovered cell or problematic cell arrangement that

contains two cells.
– Covering both cells of a problematic cell arrangement creates (“propagates”)

a new problematic cell arrangement.
– If a problematic cell arrangement is adjacent to a corner, at least one cell is

left uncovered.
– If a problematic cell arrangement is adjacent to another problematic cell

arrangement (originating at another corner), at least two cells are left un-
covered.

Thus at least four uncovered cells are always found in any packing of nets in the
rectangle.

Notice that the above argument assumed for each corner that the initial net
placed to cover the corner cell created a problematic cell arrangement attributed
to this corner. If a single development covers multiple corners simultaneously,
then this is no longer the case and the proof does not hold. Thus we assume the
larger rectangle dimension (m in the lemma statement) is at least 6, implying
that no net can cover non-adjacent corner cells simultaneously. It is easily seen
that the only net that is able to cover adjacent corner cells is E (when n = 3),
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in which case two distinct uncoverable cells, each adjacent to one of the corner
cells covered by E, are created. ⊓⊔

We now consider the remaining case.

Lemma 6. For rectangles of dimensions m × n with 5 ≥ m ≥ n ≥ 2, any
packing of nets of the cube leaves at least 4 uncovered cells.

Proof. This is again verified by using BurrTools, seen in Table 1 (left). ⊓⊔

The previous two lemmas together imply the following result for all rectan-
gles, excluding those with area less than 4, that any packing of nets of the cube
into a rectangle leaves at least 4 uncovered cells, which is a tight bound.

4 Dicube Nets

Now we turn our focus to nets of a dicube, that is, (the surface of) a face-to-face
gluing of two unit cubes. There is exactly one dicube (up to symmetry), and we
can show by enumeration that it has 723 different nets.

We ask a similar primitive question to the case of the cube: can any combi-
nation of dicube nets exactly pack some rectangle? Surprisingly, in contrast to
the cube case, the answer is affirmative.

Theorem 4. Nets of the dicube can exactly pack a 26× 20 rectangle.

Proof. The proof is by demonstration, as we can see in Fig. 13. In total, the
packing uses 26 · 20/10 = 52 nets, which come from 11 distinct nets (up to
symmetry). ⊓⊔

This example was found by hand, so we do not know whether it is minimal.
Extending to tricubes (or other n-cubes) is not so simple because there are

multiple tricube shapes.

5 Conclusion

We conclude the paper by posing some open questions and conjectures.
As we can observe in Table 1, the number of uncovered cells in all the cases

is not greater than 12. We strongly believe that it is upper bounded by 12, and
that our upper bound 14 s not tight. Therefore the first open question is the
following.

Question 1. Can we prove that the upper bound on the number of uncovered
cells is 12?

Furthermore, we believe the following, which partially supports Odawara’s
conjecture [15].
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Fig. 13. A rectangle exactly packed by developments of the dicube.

Conjecture 1. For a 6× 6k rectangle, the minimum number of uncovered cells is
exactly 12 (exactly 6k − 2 nets are packed).

For nets of the dicube, as we stated in Section 4, the following question
remains open.

Question 2. What is a rectangle of minimum area that can be exactly packed
by nets of the dicube?
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