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Abstract

In 1994 Grünbaum showed that, given a point set S in R3, it is always possible
to construct a polyhedron whose vertices are exactly S. Such a polyhedron is
called a polyhedronization of S. Agarwal et al. extended this work in 2008 by
showing that there always exists a polyhedronization that can be decomposed
into a union of tetrahedra (tetrahedralizable). In the same work they introduced
the notion of a serpentine polyhedronization for which the dual of its tetrahe-
dralization is a chain. In this work we present a randomized algorithm running
in O(n log6 n) expected time which constructs a serpentine polyhedronization
that has vertices with degree at most 7, answering an open question by Agarwal
et al.
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1. Introduction

Any set S of points in the plane (not all of which are collinear) admits a
polygonization, that is, there is a simple polygon whose vertex set is exactly S.
Similarly, a point set S ⊂ R3 admits a polyhedronization if there exists a sim-
ple polyhedron that has exactly S as its vertices. In 1994, Grünbaum proved
that every point set in R3 (not all of which are coplanar) admits a polyhe-
dronization. Unfortunately, the polyhedronizations generated by Grünbaum’s
method can be impossible to tetrahedralize. This is because they may contain
Schönhardt polyhedra, a class of nontetrahedralizable polyhedra [5].

In 2008, Agarwal, Hurtado, Toussaint, and Trias described a variety of meth-
ods for producing polyhedronizations with various properties [1]. One of these
methods, called hinge polyhedronization, produces serpentine polyhedroniza-
tions, meaning that the polyhedron admits a tetrahedralization whose dual (a
graph where each tetrahedron is a node and each edge connects a pair of nodes
whose primal entities are tetrahedra sharing a face) is a chain. Serpentine poly-
hedronizations produced by the hinge polyhedronization method are guaranteed
to have two vertices with edges to every other vertex in the set. As a result,
two vertices in these constructions have degree n − 1, where n is the number
of points in the set. It should be noted that some tetrahedra produced by this
method may be degenerate if the point set is not in general position, that is, it
contains four coplanar points. A natural question, and one posed by Agarwal
et al., is whether it is always possible to create serpentine polyhedronizations
with bounded degree.

In this work we describe a randomized algorithm for point sets in general
position that constructs a serpentine polyhedronization with constant bounded
degree. This algorithm runs in O(n log6 n) expected time, and the expectation
is independent of the input point set and output polyhedronization. The bound
on the degree of the produced polyhedronizations is 7, which we show is nearly
optimal for all sets of more than 12 points. Such bounded-degree serpentine
polyhedronizations are useful in applications of modeling and graphics, where
low local complexity is desirable for engineering and computational efficiency.

2. Setting

The convex hull of S, written CH(S), is the intersection of all half-spaces
containing S. The boundary of each face of CH(S) is a polygon with copla-
nar vertices. In the next five sections we assume that S has no four coplanar
points, and in the conclusion briefly discuss relaxing this assumption. so each
of the faces of CH(S) is triangular. We call the three vertices composing a face
of CH(S) a face triplet.

We will make reference to points and faces that see each other. We say that
a pair of points p, q can see each other if the segment pq does not intersect a
portion of any polyhedron present (either the convex hull of a set of points or a
portion of the partially constructed polyhedronization). Similarly, two segments
s1 and s2 can see each other if every pair of points p ∈ s1 and q ∈ s2 can see
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each other. A face f is the planar region bounded by a triangle formed by three
points of S. A point p can see a face f if p can see every point in f (strong
visibility). Similarly, a point p can see a segment s if p can see every point on s.

3. Algorithm

In this section we present a high-level description of the algorithm. Begin
with a point set S ⊂ R3. Select a face triplet of CH(S) arbitrarily. Call this
face triplet T0. Let S0 = S \ T0. Assign the labels u0, v0, w0 arbitrarily to the
vertices of T0 and connect the three vertices to form a triangle.

Next we search for a face triplet T1 of CH(S0) that we can attach to the
triangle T0 via a polyhedron tunnel (see Figure 1). The tunnel is tetrahedraliz-
able and has the face triplet T0 at one end, the face triplet T1 at the other end,
and it is disjoint from the interior of CH(S0). The method for selecting T1 is
described in the next section. Once the tunnel is construction, we will require
that vertex w0 has degree 3 and vertices u0 and v0 have degrees 5 and 4 (not
necessarily respectively). Moreover, the vertices of the face triplet T1 which we
will call u1, v1, w1 should have degree 3, 4, and 5, respectively. Note that the
vertex degree only counts edges in the tunnel and that the constructed tunnel
must meet the degree requirements for the vertices of T0 while it determines the
labeling of the vertices u1, v1, w1 in T1.

v0(4) w0(3)

u0(5)

u1(3)

w1(5)
v1(4)

Figure 1: Constructing a tunnel between T0, T1. The vertices u0 and v0 have degree 5 and 4,
while w0 has degree 3. The other end of the tunnel, T1, has three vertices that will be labeled
u1, v1, w1 with degree 3, 4, and 5 (shown in parentheses), respectively.

After finding a face triplet T1 that meets these requirements, the process is
repeated for T1 and S1, T2 and S2, where Si = Si−1 \Ti, until Si contains fewer
than three points. At each step Ti has three vertices: ui connected to 3 vertices
of Si, and vi, wi that are connected to 1 and 2 vertices of Si (not necessarily
respectively). Once Si contains fewer than three points, a degenerate tunnel
is built out of the remaining points and the algorithm stops. In Sections 4
and 5 we prove that such a construction is always possible, producing a valid
serpentine polyhedronization with vertex degrees bounded by 7. In Section 6
we provide details regarding the data structures used and provide an analysis
of the algorithm’s running time.
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4. Tunnel Construction

Here we prove that given Ti, it is always possible to find a face triplet Ti+1

such that a three-tetrahedron tunnel (∆1∆2∆3) can be constructed between
them.

Refer to Figure 2. Let `1 denote the line through uivi. Call H1 the plane
containing Ti (and thus `1). Note that the plane supporting Ti does not intersect
CH(Si) because Ti is a face of CH(Si−1). Rotate H1 about `1 in the direction
that maintains separation of wi and CH(Si) until CH(Si) is intersected. By the
general position assumption, this intersection will be at a vertex vcone. Let H2

be the plane through `1 and vcone, and let R1 be the wedge between H1 and H2

swept-out by the halfplane of H1 containing Ti.
Now let `2 denote the line parallel to `1 through vcone. Rotate H2 about

`2, starting at uivi, in the direction that maintains the separation of uivi and
CH(Si) until CH(Si) is intersected. The intersection is either an edge or a face.
If it is an edge, call this edge e. If it is a face, select an edge e of this face that
has vcone as an endpoint. Let H3 be the plane containing `2 and e, and let R2

be the wedge between H2 and H3 swept-out by the halfplane of H2 containing
`1.

vcone

e

vi ui
wi

`1

`2

α1

α2

H1

H2
H3

Figure 2: A visualization of the arrangement created by Ti. The angles α1, α2 denote the
swept angular regions forming R1 and R2, respectively.

Lemma 1. The segment uivi can see edge e.

Proof. Recall that the plane supporting Ti does not intersect CH(Si), so wi

cannot interfere with visibility. Now consider a segment connecting a point on
uivi and a point on e. This segment is contained in R2, which does not intersect
CH(Si). Thus, neither wi nor CH(Si) can block visibility between uivi and e.

Connect the endpoints of e to ui and vi with four edges to form the middle
tetrahedron ∆2. The endpoint of e that is not vcone is connected to two vertices
of Ti and will not be connected to wi. Thus, this vertex is vi+1.

Lemma 2. Vertex wi can see face uivivcone of ∆2.
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Proof. The swept-out region R1 does not contain any portion of CH(Si) or
∆2. Furthermore, every segment connecting wi to a point on the face uivivcone
is contained in R1. Thus, wi can see the face uivivcone.

Connect wi to vcone (it is already connected to ui and vi) to form a tetrahe-
dron ∆1. The vertex vcone is connected to all three vertices of Ti and is assigned
to be wi+1.

Lemma 3. One of the faces f of CH(Si) incident to e is seen by ui or vi.

Proof. First consider ∆1. The plane H2 separates ∆1 from CH(Si) and ∆2.
So ∆1 cannot obscure visibility between a vertex of ∆2 and either face of CH(Si)
incident to e. Now refer to Figure 3. Consider rotating each face f of CH(Si)
incident to e away from CH(Si) until a face of ∆2 is intersected. These rotations
are disjoint and both occur around the line containing e. So both cannot be
greater than 180◦. It is also not possible that both rotations are 180◦ due to the
general-position assumption. Let f be a face that rotates less than 180◦. The
face f is seen by the vertices of the face of ∆2 it intersects, including either ui

or vi. Call the vertex ui or vi intersected q.

f

y

ui

vi

∆2

e

Figure 3: The scenario described in Lemma 3. Either ui or vi must see a face of CH(Si)
incident to e. In this case, vi sees f . So q = vi.

Connect q to y, the third vertex of this face (q is already connected to the
other two vertices of f , the endpoints of e) to form tetrahedron ∆3. The vertex
y is connected to only a single vertex of Ti, and so is ui+1.

Lemma 4. The tetrahedra ∆1,∆2,∆3 form a three-tetrahedron tunnel in
which ui, vi have degree 5 and 4 (not necessarily respectively), and wi has de-
gree 3.

Proof. See Figure 4. The vertices ui, vi, wi each have two edges connecting
them to the other two vertices of Ti. Vertex wi is also connected to vcone, so it
has degree 3. Vertices ui and vi are also connected to the endpoints of e. Vertex
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q, which is either ui or vi, is also connected to y. Thus, one vertex from {ui, vi}
has degree 5, while the other has degree 4.

e

vcone

vi

ui

wi

y

f

∆1

∆2

∆3

Figure 4: A complete tunnel and the three tetrahedra ∆1,∆2,∆3 composing it.

Once the tunnel between T0 and T1 is constructed, repeat the process to
build a tunnel from T1 to T2, etc. When Ti is reached, such that Si contains
fewer than three points, construct a four- or five-vertex polyhedron.

5. Polyhedronization Properties

In this section we prove that the union of the constructed tunnels is a serpen-
tine polyhedronization with vertex degrees bounded by 7, and that this bound
is nearly optimal.

Lemma 5. Tunnel interiors are disjoint.

Proof. Consider the two tunnels between Ti, Ti+1 and Tj , Tj+1 for j 6= i. With-
out loss of generality, let j > i. All of the vertices of the tunnel between Ti, Ti+1

are on the boundary or exterior of CH(Si). Additionally, all of the vertices of the
tunnel between Tj and Tj+1 are on the boundary or interior of CH(Si). There-
fore, the two tunnels may only intersect on the boundary of CH(Si). Hence,
their interiors are disjoint.

Lemma 6. The resulting polyhedronization of S is a serpentine polyhedron.

Proof. Each tunnel is constructed of three tetrahedra that form a chain from Ti

to Ti+1 in the order ∆1,∆2,∆3. The tunnel between face triplets Ti and Ti+1

shares Ti (resp., Ti+1) with the previous (resp., next) tunnels for i > 0. For
i = 0 there is no previous tunnel and the tetrahedron with face T0 is the first
element of the dual chain. For the last tunnel, Tk, either a degenerate tunnel is
formed with the remaining one, or two points or the last tetrahedron of Tk is the
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end of the chain. In the degenerate case, a face of Tk shares a face with the final
degenerate tunnel. The final degenerate tunnel must be tetrahedralizable and
have a dual chain since it is a polyhedron with four or five vertices. Therefore,
in both cases the dual of the polyhedronization is a chain.

Theorem 7. Every vertex in the polyhedronization of S has degree at most 7.

Proof. First consider the face triplets except the first and last. Each vertex is
part of some triangle Ti and has two edges connecting it to the other vertices
of Ti.

For a vertex ui, one additional edge is connected to ui in the tunnel between
Ti−1 and Ti, and at most three additional edges are connected to ui in the
tunnel between Ti and Ti+1 (this occurs when ui = q). So ui has degree at
most 1 + 2 + 3 = 6. For a vertex vi, two additional edges are connected to
vi in the tunnel between Ti−1 and Ti, and at most three additional edges are
connected to vi in the tunnel between Ti and Ti+1 (this occurs when vi = q).
So vi has degree at most 2 + 2 + 3 = 7. For a vertex wi, three additional edges
are connected to wi in the tunnel between Ti−1 and Ti, and one additional edge
is connected to wi in the tunnel between Ti and Ti+1. So wi has degree at most
3 + 2 + 1 = 6.

The face triplet T1 is only attached to the triplet T2, so every vertex of T1

has degree at most 5. Let Tk be the last face triplet. Thus, |Sk| ∈ {0, 1, 2}. By
construction, the vertices of Tk only share edges with vertices in Tk−1∪Tk ∪Sk.
This set has size at most 3+3+2 = 8. So any vertex in Tk has degree at most 7.
Similarly, the vertices of Sk only share edges with vertices in Tk ∪ Sk, and so
have degree at most 4.

Lemma 8. Any polyhedronization of a set of at least 12 points in general posi-
tion has a vertex of degree at least 6.

Proof. By Euler’s formula, every polyhedron in general position with |S| ver-

tices has 3|S| − 6 edges. Hence, the average degree of a vertex is 2(3|S|−6)
|S| =

6− 12
|S| . Therefore, for |S| > 12, some vertex must have degree at least 6.

The algorithm described produces polyhedronizations with nearly optimal
degree bounds. Indeed, Theorem 7 proved that the construction produces a
polyhedronization with bounded degree 7, while by Lemma 8, every polyhe-
dronization of an arbitrary number of points must have some vertex with degree
at least 6.

6. Running Time

The efficiency of the algorithm described in Section 3 depends upon the
data structure used to compute Si and Ti at each step. The vertices of Ti can
be found using four gift-wrapping queries: given a plane in space and a line
contained in the plane, find the first point of the set intersected by the plane
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when it is rotated around the line in some direction. The first of these queries
is used to find wi, the second to find the other vertex of e, and the third and
fourth to find the third vertices of the two faces adjacent to e on CH(Si−1).
Computing Si = Si−1 \Ti can be done by simply deleting the three points in Ti

from Si−1. Thus, we need a data structure that supports efficient gift-wrapping
queries and deletions for point sets in 3D.

The randomized data structure described by Chan [3] supports gift-wrapping
queries in O(log2 n) worst-case time, deletions in O(log6 n) expected amortized
time, and initialization in O(n log2 n) expected time, where n is the number
of input points. Since we perform O(n) gift-wrapping queries and deletions,
the total time spent on these operations is O(n log6 n) expected time. Note
that the expectation is based exclusively on the random sampling of selected
subsets of the input points which are used to construct the data structure sug-
gested by Ramos [6], which in turn is used by Chan’s data structure. Thus, the
expected time is not dependent upon the input point set or the resulting poly-
hedronization. The space used by Chan’s data structure is O(n). So using this
data structure in our algorithm yields a randomized algorithm with O(n log6 n)
expected time and O(n) space.

It should be noted that the basic structure described by Chan supports
extreme-point queries rather than gift-wrapping queries. Chan discusses the
adaptation of the structure to support the latter type of queries, noting that
the query algorithm can easily be modified “with no change at all in the descrip-
tion and correctness proof” by replacing the vertical ray-shooting data struc-
ture used with the non-vertical ray-shooting structure suggested by Dobkin and
Kirkpatrick [4].

A deterministic algorithm can be achieved by replacing Chan’s data struc-
ture with the hyperplane data structure described by Agarwal and Matous̆ek [2].
This algorithm requires O(n1+ε) time and space, for any fixed ε > 0.

7. Conclusion

In this paper we have shown that in R3, fast construction of simple poly-
hedronizations with bounded constant degree is always possible for points in
general position. If the requirement of general position is removed, then the
same algorithm still produces a bounded-degree serpentine polyhedronization,
but with the possibility that some of the tetrahedra are degenerate, i.e., have
zero volume. It still remains open whether a polyhedronization with degree 6
always exists, or whether some point sets only admit polyhedronizations with
degree 7 or higher. It is also unknown whether a similar algorithm could work
in higher dimensions, and how the problem changes if polyhedronizations with
positive genus (i.e. with holes) are permitted.
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