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Abstract. Light reflecting diffusely off of a surface leaves in all direc-
tions. It is shown that every simple polygon with n vertices can be il-
luminated from a single point light source s after at most b(n − 2)/4c
diffuse reflections, and this bound is the best possible. A point s with
this property can be computed in O(n logn) time.

1 Introduction

When light diffusely reflects off of a surface, it scatters in all directions. This is
in contrast to specular reflection, where the angle of incidence equals the angle
of reflection. We are interested in the minimum number of diffuse reflections
needed to illuminate all points in the interior of a simple polygon P with n
vertices from a single light source s in the interior of P . A diffuse reflection path
is a polygonal path γ contained in P such that every interior vertex of γ lies in
the relative interior of some edge of P , and the relative interior of every edge
of γ is in the interior of P (see Fig. 1 for an example). Our main result is the
following.

Theorem 1. For every simple polygon P with n ≥ 3 vertices, there is a point
s ∈ int(P ) such that for all t ∈ int(P ), there is an s-to-t diffuse reflection path
with at most b(n− 2)/4c internal vertices. This lower bound is the best possible.
A point s ∈ int(P ) with this property can be computed in O(n log n) time.

Our main result is, in fact, a tight bound on the diffuse reflection radius
(defined below) for simple polygons. Denote by Vk(s) ⊆ P the part of the polygon
illuminated by a light source s after at most k diffuse reflections. Formally, Vk(s)
is the set of points t ∈ P such that there is a diffuse reflection path from s to
t with at most k interior vertices. Hence V0(s) is the visibility polygon of point
s within the polygon P . The diffuse reflection depth of a point s ∈ int(P ) is
the minimum r ≥ 0 such that int(P ) ⊆ Vr(s). The diffuse reflection radius
R(P ) of a simple polygon P is the minimum diffuse reflection depth over all
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Fig. 1. (a) A diffuse reflection path between s to t in a simple polygon P . (b)–(d) The
regions of a polygon illuminated by a light source s after 0, 1, and 2 diffuse reflections.
The diffuse reflection radius of a zig-zag polygon with n vertices is b(n− 2)/4c.

points s ∈ int(P ). The set of points s ∈ int(P ) that attain this minimum is the
diffuse reflection center of P . With this terminology, Theorem 1 implies that
R(P ) ≤ b(n− 2)/4c for every simple polygon P with n ≥ 3 vertices. A family of
zig-zag polygons (see such polygon in Fig. 1) shows that this bound is the best
possible for all n ≥ 3. The diffuse reflection diameter D(P ) of P is the maximum
diffuse reflection depth over all s ∈ int(P ). Barequet et al. [6] recently proved,
confirming a conjecture by Aanjaneya et al. [1], that D(P ) ≤ bn/2c − 1 for all
simple polygons with n vertices, and this bound is the best possible.

Proof Technique. The regions Vk(s) are notoriously difficult to handle. Brahma
et al. [7] constructed examples where V2(s) is not simply connected, and where
V3(s) has Ω(n) holes. In general, the maximum complexity of Vk(s) is known to
be Ω(n2) and O(n9) [2]. Rather than consider Vk(s), we use the simply connected
regions Rk(s) ⊆ Vk(s) defined by Barequet et al. [6] (reviewed in Section 2.1)
and prove that int(P ) ⊆ Rb(n−2)/4c(s) for some point s ∈ int(P ).

In Section 2, we establish a simple sufficient condition (Lemma 1) for a point
s to determine if int(P ) ⊆ Rb(n−2)/4c(s). We use a generalization of the kernel of
a simple polygon (Section 3.1) and the weak visibility polygon for a line segment
(Section 3.2) to prove that there exists a point satisfying these considitions,
with the exception of two extremal cases that are resolved directly (Section 2.2).
The existential proof is turned into an efficient algorithm by computing the
generalized kernel in O(n log n) time, and maintaining the visibility of a point
moving along a line segment with a persistent data structure undergoing O(n)
updates in O(log n) time each.

Motivation and Related Work. The diffuse reflection path is a special case of
a link path, which has been studied extensively due to its applications in motion
planning, robotics, and curve compression [13,17]. The link distance between
two points, s and t, in a simple polygon P is the minimum number of edges in
a polygonal path between s and t that lies entirely in P . In a polygon P with n
vertices, the link distance between two points can be computed in O(n) time [20].
The link diameter of P , the maximum link distance between two points in P , can
be computed in O(n log n) time [21]. The link depth of a point s is the smallest
number d such that all other points in P are within link distance d of s. The
link radius is the minimum over all link depths, and the link center is the set
of points with minimum link depth. It is known that the link center is a convex
region, and can be computed in O(n log n) time [12].

2



The geodesic center of a simple polygon is a point inside the polygon which
minimizes the maximum internal (geodesic) distance to any point in the polygon.
Pollack et al. [18] show how to compute the geodesic center of a simple polygon
with n vertices in O(n log n) time. Hershberger and Suri [15] give an O(n) time
algorithm for computing the geodesic diameter. Bae et al. [5] show that the
geodesic diameter and center under the L1 metric can be computed in O(n)
time in every simple polygon with n vertices.

Note that the link distance, geodesic distance and the L1-geodesic distance
are all metrics, while the minimum number of reflections on a diffuse reflection
path between two points is not a metric (the triangle inequality fails). This
partly explains the difficulty of handling diffuse reflections.

In contrast to link paths, the currently known algorithm for computing a
minimum diffuse reflection path (one with the minimum number of reflections)
between two points in a simple polygon with n vertices takes O(n9) time [2,13];
and no polynomial time algorithm is known for computing the diffuse reflection
diameter or radius of a polygon.

2 Preliminaries

For a planar set U ⊆ R2, we denote the interior by int(U), the boundary by ∂U ,
and the closure by cl(U). Let P be a simply connected closed polygonal domain
(for short, simple polygon) with n vertices. A chord of P is a closed line segment
ab such that a, b ∈ ∂P , and the relative interior of ab is in int(P ).

We assume that the vertices of P are in general position, and we only consider
light sources s ∈ int(P ) that do not lie on any line spanned by two vertices of
P . Recall that V0(s) is the visibility polygon of the point s ∈ P with respect
to P . The pockets of V0(s) are the connected components of P \ cl(V0(s)). See
Fig. 2(a) for examples. The common boundary of V0(s) and a pocket is a chord
ab of P (called a window) such that a is a reflex vertex of P that lies in the
relative interior of segment sb. We say that a pocket with a window ab is induced
by the reflex vertex a. Note that every reflex vertex induces at most one pocket
of V0(s). We define the size of a pocket as the number of vertices of P on the
boundary of the pocket. Since the pockets of V0(s) are pairwise disjoint, the sum
of the sizes of the pockets is at most n, the number of vertices of P .

A pocket is a left (resp., right) pocket if it lies on the left (resp., right) side

of the directed line
−→
ab. Two pockets of V0(s) are dependent if some chord of P

crosses the window of both pockets; otherwise they are independent. One pocket
is called independent if it is independent of all other pockets.

Proposition 1. All left (resp., right) pockets of V0(s) are pairwise independent.

The main result of this section is a sufficient condition (Lemma 1) for a
point s ∈ int(P ) to fully illuminate int(P ) within b(n− 2)/4c diffuse reflections.
A proof of the lemma is offered in the full version of the paper. It relies on
the following subsection, techniques developed in [6], and the bound D(P ) ≤
bn/2c − 1 on the diffuse reflection diameter.

3



s

a1

a2

b2

b1 b3

a3

U1

U2

U3

⇒

P

V0(s) = R0

s

a1

a2

b1

a3

P

R1

(a) (b)

b3

b2

W1

W2

W3

Fig. 2. (a) A polygon P where V0(s) has three pockets U1, U2 and U3, of size 4, 3, and
5, respectively. The left pockets are U1 and U2, the only right pocket is U3. Pocket U1

is independent of both U2 and U3; but U2 and U3 are dependent. (b) The construction
of region R1 from R0 = V0(s) in [6]. Pocket U1 is saturated, and pockets U2 and U3

are unsaturated.

Lemma 1. We have int(P ) ⊆ Vb(n−2)/4c(s) for a point s ∈ int(P ) if the pockets
of V0(s) satisfy these conditions:

C1 every pocket has size at most bn/2c − 1; and
C2 the sum of the sizes of any two dependent pockets is at most bn/2c − 1.

2.1 Review of regions Rk.

We briefly review the necessary tools from [6]. Let s ∈ int(P ) be a point in
general position. Recall that Vk(s), the set of points reachable from s with at
most k diffuse reflections, is not necessarily simply connected when k ≥ 1 [7].
Instead of tackling Vk(s) directly, Barequet et al. [6] recursively define simply
connected subsets Rk = Rk(s) ⊆ Vk(s) for all k ∈ N0, starting with R0 = V0(s).
We review how Rk+1 is constructed from Rk. Each region Rk is bounded by
chords of P and segments along the boundary ∂P . The connected components
of P \ cl(Rk) are the pockets of Rk. Each pocket Uab of Rk is bounded by a
chord ab such that a is a reflex vertex of P , b is an interior point of an edge
of P , and the two edges of P incident to a are on the same side of the line ab
(these properties are maintained in the recursive definition). A pocket Uab of
Rk is saturated if every chord of P that crosses ab has one endpoint in Rk and
the other endpoint in Uab. Otherwise, Uab is unsaturated. Recall that for a point
s′ ∈ P , V0(s′) is the set of points in P visible from s′; and for a line segment
pq ⊆ P , V0(pq) is the set of points in P visible from any point in pq.

The regions Rk are defined as follows (refer to Fig. 2(b)). Let R0 = V0(s). If
int(P ) ⊆ Rk, then let Rk+1 = cl(Rk) = P . If int(P ) 6⊆ Rk, then Rk has at least
one pocket. For each pocket Uab, define a set Wab ⊆ Uab: If ab is saturated, then
let Wab = V0(ab) ∩ Uab. If ab is unsaturated, then let pab ∈ Rk ∩ ∂P be a point
infinitely close to b such that no line determined by two vertices of P separates b
and pab; and then let Wab = V0(pab)∩Uab. Let Rk+1 be the union of cl(Rk) and
the sets Wab for all pockets Uab of Rk. Barequet et al. [6] prove that Rk ⊆ Vk(s)
for all k ∈ N0.
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We say that a region Rk weakly covers an edge of P if the boundary ∂Rk
intersects the relative interior of that edge. On the boundary of every pocket
Uab of Rk, there is an edge of P that Rk does not weakly cover, namely, the
edge of P incident to a. We call this edge the lead edge of Uab. The following
observation follows from the way the regions Rk are constructed in [6].

Proposition 2 ([6]). For every pocket U of region Rk, k ∈ N0, the lead edge
of U is weakly covered by region Rk+1 and is not weakly covered by Rk.

Proposition 3. If a pocket Uab of V0(s) has size m, then Rk weakly covers at
least min(k + 1,m) edges of P on the boundary of U .

The following lemma is a direct consequence of Proposition 3. It will be used
for unsaturated pockets of V0(s).

Lemma 2. If U is a size-m pocket of V0(s), then int(U) ⊆ Rm−1.

For saturated pockets, the diameter bound allows a significantly better result.

Lemma 3. If U is a size-m saturated pocket of Rk, then int(U) ⊆ Rk+bm/2c.
Lemmas 2 and 3 combined yield the following for dependent pockets of V0(s).

Lemma 4. Let U be a pocket of V0(s) of size m. If each pocket dependent on U
has size at most m′ < m, then int(U) ⊆ Rb(m+m′)/2c.

2.2 Double Violators

Recall that the sum of sizes of the pockets of V0(s) is at most n, the number of
vertices of P . Therefore, it is possible that several pockets or dependent pairs of
pockets violate conditions C1 or C2 in Lemma 1. We say that a point s ∈ int(P )
is a double violator if V0(s) has either (i) two disjoint pairs of dependent pockets,
each pair with total size at least bn/2c, or (ii) a pair of dependent pockets of
total size at least bn/2c and an independent pocket of size at least bn/2c. (We do
not worry about the possibility of two independent pockets, each of size at least
bn/2c.) In this section, we show that if there is a double violator s ∈ int(P ), then
there is a point s′ ∈ int(P ) (possibly s′ = s) for which int(P ) ⊆ Vb(n−2)/4c(s′),
and such an s′ can be found in O(n) time.

The key technical tool is the following variant of Lemma 4 for a pair of
dependent pockets that are adjacent to a common edge (i.e., share an edge).

Lemma 5. Let Uab and Ua′b′ be two dependent pockets of V0(s) such that neither
is dependent on any other pocket, and points b and b′ lie in the same edge of
P . Let the size of Uab be m and Ua′b′ be m′. Then Rb(m+m′−1)/2c contains the
interior of both Uab and Ua′b′ .

Lemma 6. Suppose that V0(s) has two disjoint pairs of dependent pockets, each
pair with total size bn/2c. Then there is a point s′ ∈ int(P ) such that int(P ) ⊆
Vb(n−2)/4c(s′), and s′ can be computed in O(n) time.

Lemma 7. Suppose that V0(s) has a pair of dependent pockets of total size dn/2e
and an independent pocket of size bn/2c. Then there is a point s′ ∈ int(P ) with
int(P ) ⊆ Vb(n−2)/4c(s′), and s′ can be computed in O(n) time.
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Fig. 3. Two instances of a double violator point s. (a) A polygon P with n = 13
vertices where V0(s) has four pockets: two pairs of dependent pockets, the sum of sizes
of each pair is bn/2c = 6. (b) A polygon P with n = 13 vertices where V0(s) has three
pockets: two dependent pockets of total size bn/2c = 6 and an independent pocket of
size bn/2c = 6.

3 Finding a Witness Point

In Section 3.1, we show that in every simple polygon P , there is a point s ∈ int(P )
that satisfies condition C1 In Section 3.2, we pick a point s ∈ int(P ) that satisfies
condition C1, and move it continuously until either (i) it satisfies both conditions
C1 and C2, or (ii) it becomes a double violator. In both cases, we find a witness
point for Theorem 1 (by Lemmas 1, 6, and 7).

3.1 Generalized Kernel

Let P be a simple polygon with n vertices. Recall that the set of points from
which the entire polygon P is visible is the kernel, denoted K(P ), which is
the intersection of all halfplanes bounded by a supporting line of an edge of
P and facing towards the interior of P . Lee and Preparata [16] designed an
optimal O(n) time algorithm for computing the kernel of a simple polygon with
n vertices. We now define a generalization of the kernel. For an integer q ∈ N0,
let Kq(P ) denote the set of points s ∈ P such that every pocket of V0(s) has
size at most q. Clearly, K(P ) = K0(P ) = K1(P ), and Kq(P ) ⊆ Kq+1(P ) for
all q ∈ N0. The set of points that satisfy condition C1 is Kbn/2c(P ). For every

P
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Fig. 4. (a) Polygon L4(vi). (b) Polygon M4(vi). (c) Polygon K4(P ).
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reflex vertex v, we define two polygons Lq(v) ⊆ P and Mq(v) ⊆ P : Let Lq(v)
(resp. Mq(v)) be the set of points s ∈ P such that v does not induce a left (resp.,
right) pocket of size more than q in V0(s). We have

Kq(P ) =
⋂

v reflex

(Lq(v) ∩Mq(v)) .

We show how to compute the polygons Lq(v) and Mq(v). Refer to Fig. 4.
Denote the vertices of P by (v0, v1, . . . , vn−1), and use arithmetic modulo n
on the indices. For a reflex vertex vi, let viai be the first edge of the shortest
(geodesic) path from vi to vi−q in P . If the chord viai and vivi+1 meet at a
reflex angle, then viai is on the boundary of the smallest left pocket of size at
least q induced by vi (for any source s ∈ P ). In this case, the ray −−→aivi enters
the interior of P , and we denote by `i the first point hit on ∂P . The polygon

Lq(vi) is the part of P lying on the left of the chord
−−→
vi`i. However, if the chord

viai and vivi+1 meet at convex angle, then every left pocket induced by vi has
size less than q, and we have Lq(vi) = P . Similarly, let vibi be the first edge of
the shortest path from vi to vi+q. Vertex vi can induce a right pocket of size
more than q only if bivi and vivi−1 make a reflex angle. In this case, vibi is the

boundary of the largest right pocket of size at most q induced by vi, the ray
−−→
bivi

enters the interior of P , and hits ∂P at a point mi, and Mq(vi) is the part of P
lying on the right of the chord −−→vimi. if bivi and vivi−1 meet at a convex angle,
then Mq(vi) = P .

Note that every set Lq(vi) (resp., Mq(vi)) is P -convex (a.k.a. geodesically
convex ), that is, Li(vi) contains the shortest path between any two points in
Lq(vi) with respect to P [5,11,22]. Since the intersection of P -convex polygons
is P -convex, Kq(P ) is also P -convex for every q ∈ N0. There exists a point s ∈
int(P ) satisfying condition C1 iff Kbn/2c(P ) is nonempty. We prove Kbn/2c(P ) 6=
∅ using a Helly-type result by Breen [8].

Theorem 2 ([8]). Let P be a family of simple polygons in the plane. If every
three (not necessarily distinct) members of P have a simply connected union and
every two members of P have a nonempty intersection, then

⋂{P : P ∈ P} 6= ∅.

Lemma 8. For every simple polygon P with n ≥ 3 vertices, Kbn/2c(P ) 6= ∅.

Proof. We apply Theorem 2 for the polygons Lbn/2c(vi) and Mbn/2c(vi) for all
reflex vertices vi of P . By definition, Lbn/2c(vi) (resp., Mbn/2c(vi)) is incident to
at least bn/2c+ 1 vertices of P , namely vi−bn/2c, . . . , vi (resp., vi, . . . , vi+bn/2c).
Hence the intersection of any two sets is incident to at least at most 2(bn/2c+
1)−n > n vertices of P . It remains to show that the union of any three of them
is simply connected.

Suppose, to the contrary, that there are three sets whose union has a hole.
Since each set is bounded by a chord of P , the hole must be a triangle bounded by
the three chords on the boundary of the three polygons. Each chord is incident
to a reflex vertex of P and is collinear with another chord of P that weakly
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Fig. 5. (a) A simple polygon P with n = 13 vertices, and the generalized kernel
Kbn/2c(P ) = K6(P ). (b) A schematic picture of a triangular hole in the union of
three polygons in P .

separates the vertices {vi, vi+1, . . . , vi+bn/2c} or {vi, vi−1, . . . , vi−bn/2c} from the
hole. Figure 5(b) shows a schematic image. The three chords together weakly
separate disjoint sets of vertices of total size at least 3bn/2c + 3 > n from the
hole, contradicting the fact that P has n vertices altogether. ut

Lemma 9. For every q ∈ N0, Kq(P ) can be computed in O(n log n) time.

3.2 Finding a Witness

In this section, we present an algorithm that, given a simple polygon P with
n vertices in general position, finds a witness s ∈ int(P ) such that int(P ) ⊆
Vb(n−2)/4c(s).

Let s0 be an arbitrary point in int(Kbn/2c(P )). By Lemma 8, such a point
exists. We can compute the visibility polygon V0(s0) and its pockets in O(n)
time [14]. The definition of Kbn/2c(P ) ensures that s0 satisfies condition C1 of
Lemma 1. If it also satisfies C2, then s = s0 is a desired witness.

Assume that s0 does not satisfy C2, that is, V0(s0) has two dependent pockets
of total size at least bn/2c, say a left pocket Uab and (by Proposition 1) a right
pocket Ua′b′ . We may assume that Uab is at least as large as Ua′b′ , by applying a
reflection if necessary, and so the size of Uab is at least bn/4c. Refer to Fig. 6(a).
Let c ∈ ∂P be a point sufficiently close to b such that segment bc is disjoint
from all lines spanned by the vertices of P , segment s0c is disjoint from the
intersection of any two lines spanned by the vertices of P , and s0c ⊆ P . In
Lemma 10 (below), we find a point on segment s0c that is a witness, or double
violator, or improves a parameter (spread) that we introduce now.

For a pair of dependent pockets, a left pocket Uab and (by Proposition 1) a
right pocket Ua′b′ , let spread(a, a′) be the number of vertices on ∂P clockwise
from a to a′ (inclusive). Note that the spread is always at least the sum of the
sizes of the two dependent pockets, as all vertices incident to the two pockets
are counted. For a pair of pockets of total size at least bn/2c, we have bn/2c ≤
spread(a, a′) ≤ n.

The visibility polygons of two points are combinatorially equivalent if there is
a bijection between their pockets such that corresponding pockets are incident to
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the same sets of vertices of P . The combinatorial changes incurred by a moving
point s have been thoroughly analysed in [3,4,10]. The set of points s ∈ P
that induces combinatorially equivalent visibility polygons V0(s) is a cell in the
visibility decomposition V D(P ) of polygon P . It is known that each cell is convex
and there are O(n3) cells, but a line segment in P intersects only O(n) cells [4,9].
A combinatorial change in V0(s) occurs if s crosses a critical line spanned by
two vertices of P , and the circular order of the rays from s to the two vertices
is reversed. The possible changes are: a pocket of size 2 appears or disappears;
(2) the size of a pocket increases or decreases by one; (3) two pockets merge into
one pocket or a pocket splits into two pockets. Importantly, the combinatorics
of V0(s) does not include the dependence between pockets: Proposition 1 will
prove critical for tracking when two dependent pockets become independent.

Proposition 4. Let s1s2 be a line segment in int(P ). Then

(i) Every left (resp., right) pocket of V0(s2) induced by a vertex on the left
(right) of −−→s1s2 is contained in a left (right) pocket of V0(s1).

(ii) Let Uleft and Uright be independent pockets of V0(s1). Then every two pock-
ets of V0(s2) contained in Uleft and Uright, respectively, are independent.

Lemma 10. There is a point s ∈ s0c such that one of the following holds.

• s satisfies both C1 and C2;
• s is a double violator;
• s satisfies C1 but violates C2 due to two pockets of spread ≤ spread(a, a′)−
bn/4c.

Proof. We move a point s ∈ s0c from s0 to c and trace the combinatorial changes
of the pockets of V0(s), and their dependencies. Initially, when s = s0, all pockets
have size at most bn/2c − 1; and there are two dependent pockets, a left pocket
Uab on the left of −→s0c and, by Proposition 1, a right pocket Ua′b′ on the right of−→s0c, of total size at least bn/2c. When s = c, every left pocket of V0(s) on the
left of −→s0c is independent of any right pocket on the right of −→s0c.

Consequently, when s moves from s0 to c, there is a critical change from
s = s1 to s = s2 such that V0(s1) still has two dependent pockets of size at least
bn/2c where the left (resp., right) pocket is on the left (right) of −→s0c; but V0(s2)
has no two such pockets. (See Fig. 6 for examples.) Let Uleft and Uright denote
the two violator pockets of V0(s1). The critical point is either a combinatorial
change (i.e., the size of one of these pockets drops), or the two pockets become
independent. By Proposition 4, we have Uleft ⊆ Uab and Uright ⊆ P \ Uab, and
the spread of Uleft and Uright is at most spread(a, a′). We show that one of the
statements in Lemma 10 holds for s1 or s2.

If s2 satisfies both C1 and C2, the our proof is complete (Fig. 6(a-b)). If
s2 violates C1, i.e., V0(s2) has a pocket of size ≥ bn/2c, then V0(s1) also has a
combinatorially equivalent pocket independent of Uleft and Uright, and so s1 is a
double violator. Finally, if s2 violates C2, i.e., V0(s2) has two dependent pockets
of total size bn/2c, then the left pocket of this pair is not contained in Uab. We

9



s0

b

a′
Uab

(a) (b)

a

(c) (d)

Ua′b′

s1
s2

b′c

UrightUleft

s0

b

a′
Uab

a

Ua′b′

s1
s2

b′

c

b

a′

a

s1
s2

b′c

s0

a′
b

a′

a

s1
s2

b′

c

a′
Uright

Uleft

s0

U ′
left

P P P P

Fig. 6. (a) A polygon with n = 21 vertices where s0 violates C2 a pair of dependent
pockets Uab and Ua′b′ . (b) Point s2 ∈ s0c satisfies both C1 and C2. (c) A polygon with
n = 21 vertices where s0 violates C2 with a pair of pockets Uab and Ua′b′ of spread 19.
(d) Point s2 also violates C2 with a pair of pockets of spread 13.

have two subcases to consider: (i) If the right pocket of this new pair is contained
in Uright, then their spread is at most spread(a, a′)− bn/4c (Fig. 6(c-d)). (ii) If
the right pocket of the new pair is disjoint from Uright, then V0(s1) also has
a combinatorially equivalent pair of pockets, which is different from Uleft and
Uright, and so s1 is a double violator. ut

Lemma 11. A point s ∈ s0c described in Lemma 10 can be found in O(n log n)
time.

Proof. It is enough to show that the critical positions, s1 and s2, in the proof
of Lemma 10 can be computed in O(n log n) time. We use the data structure
of Chen and Daescu [9], which is constructed by decomposing s0c into a set of
O(n) intervals with combinatorially distinct region and recording the changing
region in a persistent search tree.

However, the data structure of [9] only stores the visible region, not whether
the region induces dependent pockets. The main technical difficulty is that Ω(n2)
dependent pairs might become independent as s moves along s0s (even if we
consider only pairs of total size at least bn/2c), in contrast to only O(n) com-
binatorial changes of the visibility region. We reduce the number of relevant
events by focusing on only the “large” pockets (pockets of size at least bn/4c),
and maintaining at most one pair that violates C2 for each large pocket. (In a
dependent pair of size ≥ bn/2c, one of the pockets has size ≥ bn/4c.)

We augment the data structure of [9] as follows. We maintain the list of
all left (resp., right) pockets of V0(s) lying on the left (right) of −→s0c, sorted in
counterclockwise order along ∂P . We also maintain the set of large pockets of
size at least bn/4c from these two lists. There are at most 4 large pockets for
any s ∈ s0c. For a large pocket Uαβ of s ∈ s0c, we maintain one possible other
pocket Uα′β′ of V0(s) such that they together violate C2. If there are several such
pockets Uα′β′ , we maintain only the one where α′ (the reflex vertex that induces
Uα′β′) is farthest from c along ∂P . Thus, we maintain a set U(s) of at most 4
pairs (Uαβ , Uα′β′). Finally, for each of pair (Uαβ , Uα′β′) ∈ U , we maintain the
positions s′ = sc∩αα′ where the pair (Uαβ , Uα′β′) becomes independent assum-
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ing that neither Uαβ nor Uα′β′ goes through combinatorially before s reaches s′.
We use [9], combined with these supplemental structures, to find critical points
s1, s2 ∈ s0c such that U(s1) 6= ∅ but U(s2) = ∅.

We still need to show that U(s) can be maintained in O(n log n) time as s
moves from s0 to c. A pair (Uαβ , Uα′β′) has to be updated if Uαβ or Uα′β′ un-
dergoes a combinatorial change, or if they become independent (i.e., s ∈ αα′).
Each large pocket undergoes O(n) combinatorial changes affect them by Propo-
sition 4, and there are O(n) reflex vertices along ∂P between a and a′ (these
are the candidates for α′). No update is necessary when β or β′ changes but
Uαβ remains large and the total size of the pair is at least bn/2c. If the size of
Uαβ drops below bn/4c, we can permanently eliminate the pair from U . In all
other cases, we search for a new vertex α′, by testing the reflex vertices that
induce pockets from the current α′ towards c along ∂P until we either find a
new pocket Uα′β′ or determine that Uαβ is not dependent of any other pocket
with joint size ≥ bn/2c. We can test dependence between Uαβ and a candidate
for Uα′β′ in O(log n) time (test αα′ ⊆ P by a ray shooting query). Each update
of (Uαβ , Uα′β′) decreases the size of the large pocket Uαβ or moves the vertex α′

closer to c. Therefore, we need to test dependence between only O(n) candidate
pairs of pockets. Overall, the updates to U(s) take O(n log n) time. ut

We are now ready to prove Theorem 1.

Proof (of Theorem 1). Let P be a simple polygon with n ≥ 3 vertices. Compute
the generalized kernelKbn/2c(P ), and pick an arbitrary point s0 ∈ int(Kbn/2c(P )),
which satisfies C1. If s0 also satisfies C2, then int(P ) ⊆ Vb(n−2)/4c(s0) by
Lemma 1. Otherwise, there is a pair of dependent pockets, Uab and Ua′b′ , of
total size at least bn/2c and bn/2c ≤ spread(a, a′) ≤ n. Invoke Lemma 10 up
to four times to find a point s ∈ int(P ) that either satisfies both C1 and C2,
or is a double violator. If s satisfies C1 and C2 then Lemma 1 completes the
proof. If s is a double violator, apply Lemma 6 or Lemma 7 as appropriate to
complete the proof. The overall running time of the algorithm is O(n log n) from
the combination of Lemmas 6, 7, 9, and 11.

For every k ≥ 1, the diffuse reflection diameter of the zig-zag polygon (cf.
Fig. 1) with n = 4k + 2 vertices is k = b(n− 2)/4c. Adding up to 3 dummy
vertices on the boundary of a zig-zag polygon gives n-vertex polygons Pn with
R(Pn) = b(n− 2)/4c for all n ≥ 6. Finally, every simple polygon with 3 ≤ n ≤ 5
vertices is star-shaped, and so its diffuse reflection radius is 0 = b(n− 2)/4c. ut
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