A Complete Classification of Tile-makers

Stefan Langerman ∗† Andrew Winslow †

Abstract

We extend the study of Akiyama’s tile-makers: surfaces whose developments all tile the plane. First, we prove that the developments of Akiyama’s tile-makers are the prototiles that tile the plane isohedrally with rotation and without reflection. Second, we give a simple characterization of all closed (boundaryless) tile-makers and give three new tile-makers not known to Akiyama. Finally, we prove that the developments of tile-makers are the isohedral prototiles.

1 Introduction

A surface is a two-dimensional manifold with a finite polyhedral metric, and may have non-spherical topology or boundary. Surfaces without boundary are closed. The developments of a surface are the planar shapes obtained by cutting the surface. A vertex of a surface has (Gaussian) curvature equal to 360° minus the angles of the incident faces, and non-vertex points have 0° curvature (also called flat). A polygon is a prototile provided congruent copies of the polygon can cover the plane without gaps or overlap.

Akiyama [1] initiated the study of tile-makers: surfaces whose developments are all prototiles. He provided a set of 5 classes of (possibly degenerate) polyhedra whose surfaces are tile-makers (see Figure 1). He also proved that these are all convex polyhedra that are tile-makers.

2 Tile-maker Completeness

The tile-makers of Akiyama have developments that are prototiles of isohedral plane tilings: tilings where there exists a rigid mapping of the plane from any tile to any other tile that leaves the entire tiling invariant. Ignoring prototile symmetries, there are 9 types of isohedral tilings, and each uses tiles generated by distinct set of rotations and reflections of the prototile (see [2, 4]). We prove that the developments of Akiyama’s tile-makers are all prototiles that admit isohedral tiling using at least two rotations and no reflections of the prototile. Thus we say that Akiyama’s tile-makers are complete for these prototiles:

Theorem 2.1. Akiyama’s tile-makers are complete for the prototiles that admit isohedral tilings using at least two rotations and no reflections of the prototile.

3 Characterizing Tile-makers

The completeness of Akiyama’s tile-makers for only a subset of the isohedral tiling types begs the question of whether there exist additional tile-makers complete for a larger class of prototiles. In the process of answering this question, we give a characterization of the closed surfaces that are tile-makers, also called closed tile-makers.

Lemma 3.1. Let κ(p) be the curvature of a point p. A closed surface S is a (closed) tile-maker if and only if for every p ∈ S, κ(p) ≥ 0 and 360° − κ(p) divides 360°.

Characterizing a global property (tile-maker-ness) by a local property (curvature) is possible by using the well-known Gauss-Bonnet theorem. Indeed, our lemma can be thought of as a “Gauss-Bonnet theorem for tile-makers”. The restriction to only closed
tile-makers avoids “derivative” tile-makers obtained as partial cuttings of other tile-makers.

4 New Tile-makers

The Gauss-Bonnet theorem states that for any closed surface with Euler characteristic χ, the total curvature of the points on the surface is $360^\circ \chi$. The Euler characteristic is closely related to the genus of a surface. For orientable and non-orientable surfaces with genus g, $\chi = 2 - 2g$ and $\chi = 2 - g$, respectively.

Applying the local curvature constraint of Lemma 3.1 to surfaces of Euler characteristic $0 \leq \chi \leq 2$ yields all closed tile-makers. The list consists of Akiyama’s tile makers along with three new tile-makers, two of which are flat: they have 0° curvature at all points.

Theorem 4.1. Flat tori, flat Klein bottles, and real projective planes flat everywhere except 2 points with 180° curvature are tile-makers. Along with Akiyama’s, they are the only closed tile-makers.

Klein bottles and real projective planes cannot be embedded in three dimensions without self-intersection. However, embeddable tile-makers can be obtained by partial cuttings of these surfaces, e.g. Möbius strips from Klein bottles. An example of obtaining a prototile as a development of a flat torus is seen in Figure 2.

Perhaps as expected, Akiyama’s tile-makers and the new tile-makers together are complete for the entire class of prototiles that admit isohedral tilings.

Theorem 4.2. The set of all closed tile-makers (listed in Theorem 4.1) is complete for the set of prototiles that admit isohedral tilings.

Not all prototiles admit isohedral tilings; such prototiles are called anisohedral (see Figure 3). By the previous result, anisohedral prototiles cannot be developments of closed tile-makers.

Corollary 4.3. No anisohedral tile is the development of a closed tile-maker.

Figure 3: An anisohedral prototile due to Kershner [3]. Corollary 4.3 implies the prototile is not a development of any closed tile-maker.

References