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Let S be a set of n points in the plane. A simple undirected graph G = (S,E) with vertex set
S is called a geometric t-spanner if any two points u, v ∈ S at distance |uv| in the plane are at
distance at most t · |uv| in G (the distance between two points in G is the length of a shortest path
connecting them in G). The smallest integer t for which this property holds is called the spanning
ratio of G.

For a fixed integer k > 0, the Yao graph Yk(S) and the Theta graph Θk(S) induced by S
are constructed as follows. Partition the plane into k equiangular cones by extending k equally-
separated rays starting at the origin, with the first ray in the direction of the positive x-axis, then
translate the cones to each point u ∈ S, and connect u to a “nearest” neighbor in each cone. The
difference between Yao and Theta graphs is in the way the “nearest” neighbor is defined. For a
fixed point u ∈ S and a cone C(u) with apex u, a Yao edge −→uv ∈ C(u) minimizes the Euclidean
distance |uv| between u and v, whereas a Theta edge −→uv ∈ C(u) minimizes the projective distance
‖uv‖ from u to v, defined as Euclidean distance between u and the orthogonal projection of v on
the bisector of C(u). Ties are arbitrarily broken. See Figure 1a.

Each of the graphs Θk and Yk has out-degree at most k, but in-degree n− 1 in the worst case.
To reduce the in-degrees, a second filtering step can be applied to the set of incoming edges in each
cone. This filtering step eliminates, for each each point u ∈ S and each cone with apex u, all but a
“shortest” incoming edge. The result of this filtering step applied on Θk (Yk) is the Theta-Theta
(Yao-Yao) graph ΘΘk (Y Yk). Again, ties are arbitrarily broken.

Yao and Theta graphs (and their Yao-Yao and Theta-Theta sparse variants) have many impor-
tant applications in wireless networking, motion planning and walkthrough animations. Many such
applications take advantage of the spanning and sparsity properties of these graphs, which have
been extensively studied. Molla [5] showed that, Y2 and Y3, are not spanners. On the other hand,
it has been shown that, for any k ≥ 4, Yk and Θk are spanners (refer to [2]).

In contrast with Yao and Theta graphs, our knowledge about Yao-Yao and Theta-Theta graphs
is more limited. Damian showed that, for k ≥ 5, Y Y6k and ΘΘ6k are 16.76-spanners [2] (and the
asymptotic spanning ratio is 2+O(k−1)). Recent breakthroughs show that Y Yk, for all even k ≥ 42,
is a (6.03 + O(k−1))-spanner [4], and Y Yk for all odd k ≥ 3 is not a spanner [3]. For small values
k ≤ 5, Y Yk is not a spanner (refer to [2] and the references therein). Molla [5] showed that Y Y6 is
not a spanner, even for sets of points in convex position. This paper fills in one of the gaps in our
knowledge of Theta-Theta graphs, proving that ΘΘ6 is an 8-spanner for sets of points in convex
position, but has unbounded spanning ratio for sets of points in non-convex position.

Our results. Our first result is based on an earlier result by Bonichon et al. [1] who showed
that the half-Θ6-graph, which is obtained by retaining only those edges of Θ6 belonging to non-
consecutive cones, is a plane 2-spanner. Here we establish the following result.
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Lemma 1 For any edge
−→
ab in the Θ6-graph induced by a set of points S in convex position, there

is a path between a and b in ΘΘ6 no longer than 4|ab|, and this bound is tight.

Figure 1b shows that the bound of Lemma 1 is tight. Combined with Bonichon’s result, Lemma 1
establishes our first result that ΘΘ6 is an 8- spanner for sets of points in convex position. This is
the first result that marks a difference in the spanning properties of Y Y -graphs and ΘΘ-graphs.
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Figure 1: (a) Yao edges (left) minimize Euclidean distances and Theta edges (right) minimize
projective distances (b) Θ6-graph example (left) and corresponding ΘΘ6-graph (right).

Our second result, depicted in Figure 2, shows that ΘΘ6 is not a spanner for sets of points in
non-convex position.
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Figure 2: Point set S = {ai, bi, ci, di | i = 1 . . . n}; ΘΘ6(S) is not a spanner.
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