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Abstract. The author surveys 15 open problems regarding the algorith-
mic, structural, and existential properties of polyomino tilings.

1 Introduction

In this work, we consider a variety of open problems related to polyomino tilings.
For further reference on polyominoes and tilings, the original book on the topic
by Golomb [15] (on polyominoes) and more recent book of Grünbaum and Shep-
hard [23] (on tilings) are essential. Also see [2,26] and [19,21] for open problems
in polyominoes and tiling more broadly, respectively. We begin by introducing
the definitions used throughout; other definitions are introduced as necessary in
later sections.

Definitions. A polyomino is a subset of R2 formed by a strongly connected
union of axis-aligned unit squares centered at locations on the square lattice Z2.

Let T = {T1, T2, . . . } be an infinite set of finite simply connected closed sets
of R2. Provided the elements of T have pairwise disjoint interiors and cover the
Euclidean plane, then T is a tiling and the elements of T are called tiles.

Provided every Ti ∈ T is congruent to a common shape T , then T is mono-
hedral, T is the prototile of T , and the elements of T are called copies of T . In
this case, T is said to have a tiling.

2 Isohedral Tilings

We begin with monohedral tilings of the plane where the prototile is a polyomino.
If a tiling T has the property that for all Ti, Tj ∈ T , there exists a symmetry of
T mapping Ti to Tj , then T is isohedral ; otherwise the tiling is non-isohedral
(see Figure 1).

The enforced symmetry of isohedral tilings implies that isohedral tilings of
polyominoes can be characterized by seven boundary criteria: either the bound-
ary of the polyomino satisfies one of these criteria, or does not have an isohedral
tiling (see [27] for further discussion). The fastest known algorithm for testing
these criteria runs in O(n log2 n) time [27], where n is the number of unit-length
edges along the boundary of the polyomino. Is a faster algorithm possible?

Open Problem 1 (Open Problem 2 of [27]) Is there an O(n)-time algorithm
for determining whether a polyomino has an isohedral tiling?



Fig. 1. Isohedral (left) and non-isohedral (right) tilings of a polyomino. There is no
symmetry of the right tiling mapping one colored tile to the other.

The following problem follows from the surprising result of Wijshoff and van
Leeuwen [37] and Beaquier and Nivat [3] that every polyomino (and polygon)
with a tiling consisting only translated copies of the prototile also has such a
tiling that is isohedral. An example of Rhoads [33] seen in Figure 3 proves that
this is not the case for tilings using 90◦-, 180◦-, and 270◦-rotated copies. However,
it is unknown if this is true for tilings using other subsets of the eight possible
orientations. Specifically, isohedral tilings using only translated and 180◦-rotated
copies of the prototile are characterized by those polyominoes satisfying Con-
way’s criterion [14,34] (see 2 for an example).

Open Problem 2 (Open Problem 3 of [27]) Does every polyomino that has
a tiling using only translated and 180◦-rotated copies also have such a tiling that
is isohedral?

The three-dimensional analogs of polyominoes are polycubes: subsets of R3

formed by strongly connected unions of axis-aligned unit cubes centered at loca-
tions on the cubic lattice Z3. Just as polyominoes tile the plane, polycubes may
tile three-dimensional space.

Euler’s formula implies that the average (and thus common) number of neigh-
bors of each copy in a tiling of a polyomino is at most 6. On the other hand,
polycube tilings have no such restrictions, and may tile isohedrally with arbi-
trarily many neighbors (see [13] for an example).

Open Problem 3 Is there a polynomial-time algorithm for determining whether
a polycube has an isohedral tiling?

3 Non-isohedral Tilings

On the other extreme, it remains unknown whether there’s an algorithm for find-
ing any tiling at all for a given polyomino. This is a restriction of the well-known
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Fig. 2. Left: Conway’s criterion, specified as a factorization of the polyomino’s bound-
ary. Middle: a polyomino satisfying Conway’s criterion. Right: the isohedral tiling using
translated and 180◦-rotated copies of the polyomino induced by satisfying Conway’s
criterion.

open problem (e.g. appearing as Question 2.2 in [19]) regarding the undecidabil-
ity of determining whether a shape has a tiling.

Open Problem 4 Is determining whether a polyomino has a tiling decidable?

This problem is demonstrably different than the previous; there are polyomi-
noes that have only non-isohedral tilings (see Figure 3). Such polyominoes are
called anisohedral.

Fig. 3. A non-isohedral tiling of an anisohedral polyomino found by Rhoads [33].



Non-isohedral tilings may be partitioned into two types: periodic tilings with
(some) symmetries, and non-periodic tilings with no symmetries.1 No connected
shapes that have only non-periodic tilings, called aperiodic shapes, are known
(see [35] for more discussion).

Open Problem 5 Is there an aperiodic polyomino?

The next two problems concern periodic tilings. A tiling T is k-isohedral
provided that k is the smallest number of partitions in a partitioning of T such
that for any two copies Ti, Tj in a common part, there is a symmetry of T
mapping Ti to Tj . Thus 1-isohedral is equivalent to isohedral. A polyomino is
k-anisohedral provided it has a k-isohedral tiling, but not a k′-isohedral tiling for
any k′ < k. Examples of k-anisohedral polyominoes are known for all k ≤ 6 [30,5]
(see Figure 4), but no larger values.

Fig. 4. Left to right: k-anisohedral polyominoes for k = 2, 3, 4, 5, 6 (from [30]).

Open Problem 6 Does there exist a k-anisohedral polyomino for some k ≥ 7?

When attempting to determine whether a polyomino has a k-isohedral tiling,
one can use a similar approach as for isohedral tilings: derive a set of sufficient
boundary criteria for k-isohedral tilings, then test the polyomino against the
criteria set. However, the number of such criteria grow exponentially in k, and
it is unclear whether the criteria themselves could tested without incurring time
proportional to the polyomino’s boundary length for each criterion:

Open Problem 7 (Asked in [27]) Is determining whether a polyomino has a
k-isohedral tiling in FPT?

4 Tilings by Multiple Polyominoes

Here we consider tilings that are not monohedral: the set of prototiles contains
multiple polyominoes. The introduction of multiple prototiles enables creating
prototile sets that only have non-periodic tilings [17]. Examples of aperiodic sets
of just three polyominoes are known (see Figure 5). To the author’s knowledge,
no aperiodic set of two polyominoes is known:

Open Problem 8 Does there exist an an aperiodic set of two polyominoes?



Fig. 5. An aperiodic set of three polyominoes (modified from a similar set in [1]).

Ollinger [31] proved that determining whether a set of 5 polyominoes tile
the plane is undecidable, improving on a line of similar results for larger sets
beginning with Berger [4] and Golomb [17]. The existence of aperiodic sets of
three polyominoes opens possibility that determining whether a set of just three
or four polyominoes has a tiling is undecidable:

Open Problem 9 (Open Problem 2 of [31]) Is determining whether a set
of three (or four) polyominoes tile the plane undecidable?

5 Tilings of finite regions

The algorithmic problems of determining whether a given polyomino can tile a
finite region have been shown to be NP-complete for the L-tromino and square
(i.e., 2 × 2) tetromino [29]. As pointed out by Moore and Robson [29], these
problems are closely related to the NP-hard problem of exact set cover in planar
graphs, specifically bounded-size sets on grid graphs, and thus are likely NP-
complete for all larger polyominoes as well. However, the author is not aware of
any proof of such a result.

Open Problem 10 (Hinted at by [29]) For every polyomino P that has a
plane tiling, is determining whether P can tile a finite region NP-hard?

Klarner [25] defined the order of a polyomino to be the minimum number of
copies that can tile a rectangle. Golomb [18] proved the existence of polyominoes
with order 4s for all s ∈ N, generalizing the individual examples of polyominoes
with high even orders, e.g. 76 [6] and 92 [7]. Polyominoes with other even orders
are also known, with examples of orders 10 [16], 18 [25], 50 [28], and 138 [28] (see
Figure 6), and polyominoes of order 2 being simple to construct. It is also known
that no polyomino has order 3 [36]. This leaves a fairly wide open spectrum of
possible orders which may or may not be realized by polyominoes, the smallest
of which is 5:

Open Problem 11 Is there a polyomino of order 5?

1 The notion of periodic is actually more nuanced than this; see Section 3 of [19] for
further discussion.



Fig. 6. The smallest rectangle tiled by the polyomino shown (found and proved in [28]).
Since 138 copies of the polyomino are needed to tile the rectangle, the polyomino has
order 138.

In addition to tiling rectangles, the possibility of tiling other regions with
boundary can also be considered. For instance, half-strip regions formed by the
intersection of a horizontal strip and half-plane bounded by the y-axis. Reid [32]
asked whether tiling a half-strip implies that a rectangle can also be tiled:

Open Problem 12 (Question 6 of [32]) Does every polyomino that tiles a
half-strip also tile a rectangle?

The deeply studied notion of substitution tilings [12,20] also gives rise to
consideration of polyominoes that tiles scaled versions of themselves, called rep-
tiles. Many rep-tile polyominoes are known (see Figure 7), all of which also tile
rectangles. Hochberg and Reid [24] asked whether this is true of all rep-tiles:

Open Problem 13 (Asked in [24]) Does every rep-tile polyomino tile some
rectangle?

6 Counting Tilings

It is easily observed that some polyominoes, e.g. a square, have infinitely many
distinct tilings of the plane via “shifting” columns or rows by small, distinct
amounts. On the other hand, some polyominoes have interlocking features that
force a unique (up to symmetry) tiling. Grünbaum and Shephard [22] considered
shapes inducing a finite number of tilings r, later called r-morphic shapes [11],



Fig. 7. Two examples of rep-tiles and their tilings of scaled versions of themselves and
rectangles.

and gave examples of 2-morphic and 3-morphic polygons.2 Fontaine and Martin
later found r-morphic polyominoes for r = 4, 5 [9], r = 6, 7, 8, 10 [8], and r =
9 [10] (see Figure 8). However, no examples for larger r are known:

Open Problem 14 (Asked in [22]) Does there exist an r-morphic polyomino
for some r > 10?

3

4

6

8

6

3 3

3

4 3

4

2

9

3

Fig. 8. From left to right: polyominoes with exactly 8, 9, and 10 distinct tilings
(from [8,11]).

Following the progression in a previous section, in which the existential prob-
lem is followed by algorithmic one, how difficult is it to determine how many
tilings a polyomino has?

Open Problem 15 Is there a polynomial-time algorithm for determining whether
a polyomino has r distinct tilings?
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