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Abstract. We consider problems in variations of the two-handed ab-
stract Tile Assembly Model (2HAM), a generalization of Erik Winfree’s
abstract Tile Assembly Model (aTAM). In the latter, tiles attach one-at-
a-time to a seed-containing assembly. In the former, tiles aggregate into
supertiles that then further combine to form larger supertiles; hence,
constructions must be robust to the choice of seed (nucleation) tiles. We
obtain three distinct results in two 2HAM variants whose aTAM siblings
are well-studied.
In the first variant, called the restricted glue 2HAM (rg2HAM), glue
strengths are restricted to −1, 0, or 1. We prove this model is Tur-
ing universal, overcoming undesired growth by breaking apart undesired
computation assembly via repulsive forces.
In the second 2HAM variant, the 3D 2HAM (3D2HAM), tiles are (three-
dimensional) cubes. We prove that assembling a (roughly two-layer) n×n
square in this model is possible with O(log2 n) tile types. The construc-
tion uses “cyclic, colliding” binary counters, and assembles the shape
non-deterministically. Finally, we prove that there exist 3D2HAM sys-
tems that only assemble infinite aperiodic shapes.

1 Introduction

Self-assembly is the process through which a group of discrete components com-
bine according to simple and local interaction rules to form a complex final
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structure. Taking inspiration from the many examples of self-assembly exhibited
in nature, researchers are now investigating the use of nanoscale self-assembly
for systematic nano-fabrication of atomically-precise computational, biomedical,
and mechanical devices.

In the early 1980s, Ned Seeman [21] developed an experimental technique
for such fabrication known as DNA tile self-assembly. In DNA tile self-assembly,
a small number of single strands of DNA are used to form a DNA tile with
four “sticky ends” consisting of short sequences of unpaired nucleotides, one for
each of the the cardinal directions: north, east, south, and west. A sticky end of
one tile binds with a sticky end of a second tile if their nucleotides are Watson-
Crick complements; more generally, multi-tile supertiles bind together similarly.
Careful design of sticky ends enables an experimenter to program sets of DNA
tiles to self-assemble into target structures.

Erik Winfree’s abstract Tile Assembly Model (aTAM) is a discrete mathe-
matical model of DNA tile self-assembly [24]. The aTAM abstracts DNA tiles
are as translatable, but not rotatable, square tiles whose sides have alpha-
numerically labeled glues with integer strengths. Two tiles or assemblies placed
adjacently bind if the sums of the strengths of matching glues on coincident sides
is at least a specified minimum threshold, called the temperature of the system.
Self-assembly in the aTAM starts from a unique seed tile type and proceeds
nondeterministically and asynchronously by single-tile addition to the growing
seed assembly.

Two-handed tile assembly. A well-studied seedless generalization of the aTAM
is the two-handed abstract Tile Assembly Model (2HAM). In the 2HAM, growth
does not begin at a unique seed tile type. Instead, all possible pairs of tiles bind,
followed by all possible pairs of supertiles, until no pair of resulting supertiles
can bind further.

The role of temperature in both aTAM and 2HAM systems is critical, as it
determines the criteria by which supertiles bind: a higher temperature defines a
stronger binding criterion. At temperature 2, cooperative binding can be used to
synchronize assembly and is known to confer complex algorithmic behavior in
both the aTAM [1, 17, 23, 24] and 2HAM [4]. On the other hand, the computa-
tional and geometric power of the temperature-1 aTAM (and 2HAM) famously
remains open [10,14]).

The difficulty of implementing cooperative binding in experimental DNA tile
self-assembly has motivated the study of variants of the temperature-1 aTAM
augmented with more practical features that confer similar capabilities. This
work has established the temperature-1 aTAM is capable of universal compu-
tation and efficient shape assembly if the model is augmented with negative-
strength glues [16], a third spatial dimension [7], “triggered” glues [15], or non-
square tile shapes [11].

Unfortunately, these variations suffer from a common practical concern: avoid-
ing “spurious nucleation”, i.e. binding away from the seed tile. Indeed, even
preventing spurious nucleation with cooperative binding has substantial chal-
lenges [2, 6, 18–20]. The difficulty of implementing aTAM-like seeded growth in
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experimental systems implies that, at least currently, the behavior of experi-
mental DNA tile self-assembly systems without cooperative binding is captured
better by the (temperature-1) 2HAM than the aTAM. Due in part to the newness
of the 2HAM, prior study of augmented variants of the temperature-1 2HAM is
limited to the staged model [8], a powerful “multi-pot” model.

Our results. Here we obtain three positive results on the computational and
geometric behaviors possible in two variants of the temperature-1 2HAM. Since
the 2HAM permits growth to begin with any pair of tiles, positive results are
necessarily robust for “multiple nucleation” errors.

In the first variant we consider, called the restricted glue 2HAM or rg2HAM,
glue strengths are restricted to −1, 0, or 1. This is the two-handed equivalent
of the restricted glue aTAM (rgTAM) [16]. We prove the rg2HAM is Turing
universal (Section 3), demonstrating that the “anticooperative” behavior of the
rg2HAM, like the cooperative behavior of the aTAM and 2HAM, is capable
of simulating any Turing machine computation. The construction critically uses
negative-strength glues to “break apart” nucleations encoding incorrect machine
computations.

Note that the technique for proving the Turing universality of the temperature-
1 3D aTAM [7] cannot be used in the 2HAM, since it uses a long path of tiles
that branches and has “incorrect” branches blocked by a previous portion of the
path. In the (seedless) 2HAM, an incorrect branch may assemble and become a
“junk” assembly. In fact, every temperature-1 3D aTAM construction in [7] has
similar problems.

In the second 2HAM variant, the 3D 2HAM or 3D2HAM, tiles are (three-
dimensional) cubes. This is the two-handed equivalent of the 3D aTAM [7]. We
prove that at temperature 1, the 3D2HAM is capable of efficient assembly of
n× n squares (Section 4) and assembly of infinite aperiodic shapes (Section 5),
matching known results in the (temperature-1 3D) aTAM [7].

The efficient square construction uses two layers in the third dimension and
O(log2 n) tile types. The key idea is a special “cyclic” binary counter that pre-
vents incorrect growth from sabotaging completion of the counter’s growth.

The aperiodic construction yields only infinite terminal supertiles whose
shapes are not translations of themselves, i.e. have no repeating or periodic struc-
ture. Prior negative results on assembling aperiodic structures in the temperature-
1 aTAM was given as evidence against the Turing universality of that model [10].
Moreover, the two-dimensional temperature-1 2HAM’s ability to nucleate growth
at any tile in an assembly has recently been shown to imply strong “pumping”
results [5, 9] that imply aperiodic systems do not exist.

Here, we contrast these results with the construction of a 3D2HAM system
that assembles only infinite aperiodic assemblies. The construction simulates a
scaled-up version of a standard aTAM binary counter and special “vacuum”
glues to attach infinite periodic rows of this counter to completed (aperiodic)
counters, yielding only aperiodic terminal supertiles.

The definition of “aperiodic” used and landscape of results related to aperi-
odic tile self-assembly systems closely match those of plane tilings: non-overlapping
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coverings of the plane using collections of shapes called prototiles (see [13]). A
plane tiling is aperiodic provided it has no translational symmetry and a tile
set is aperiodic provided every plane tiling it admits is aperiodic. Determin-
ing whether a prototile set admits a tiling is undecidable; as a corollary, some
prototile sets admit only aperiodic tilings [3] (matching [24]). A long-standing
conjecture states there are no aperiodic prototile sets from a restricted class of
prototile sets, namely singleton tile sets, [12] (matching [17]). This conjecture was
recently proved to not be true if a third dimension is allowed [22] (matching [7]).

Turing universality in both tile self-assembly and plane tiling implies the
existence of aperiodic instances, but no implications in the other direction are
known. Regardless, aperiodic behavior is generally considered evidence for Tur-
ing universality. Moreover, such behavior constrains possible proofs of Turing
non-universality to those that do not forbid infinite non-repeating behavior.

2 Definitions

The set of unit vectors is U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}, also referred to as
N , E, S, W , respectively. A grid graph is an undirected graph G = (V,E) in
which V ⊆ Z2 and every edge {a, b} ∈ E has the property that a− b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not
rotated, and has a well-defined “side u” for each u ∈ U2. Each side u of t
has a glue with label labelt(u) from some fixed alphabet and a non-negative
integer strength strt(u) determined by its type t. Two tiles t and t′ that are
placed at the points a and a + u respectively, bind with strength strt (u) if
(labelt (u) , strt (u)) = (labelt′ (−u) , strt′ (−u)) and with strength 0 otherwise.

2.1 Two-handed Tile Assembly Model

The 2HAM is a generalization of the aTAM where any pair of multi-tile assem-
blies with sufficient binding strength can attach to each other. Included here
is an informal description of the 2D 2HAM; see [4] for a more complete set of
definitions.

A supertile is the equivalence class of all translations of an assembly, i.e. a
“position-less” assembly.5 The binding graph of a supertile is a weighted grid
graph whose vertices are tiles and edges between adjacent tiles have weights
corresponding to the strength of the binding between them. A supertile is τ -
stable provided every cut of its binding graph has strength at least τ .

A 2HAM tile assembly system (TAS) is a pair T = (T, τ), where T is a finite
tile set and τ is the temperature; typically τ ∈ {1, 2}. Given a TAS T = (T, τ), a
supertile α is producible, denoted α ∈ A[T ], provided that either α is a single tile
in T , or α is the union of two smaller non-overlapping producible supertiles α1

and α2 (called subassemblies) such that the cut of α into α1 and α2 has strength

5 Such a distinction is only needed in two-handed models, where the seed cannot be
used as a “reference point”.
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at least τ . For brevity, this relationship between α1, α2, and α is (non-uniquely)
denoted α = α1 + α2. A producible supertile α is terminal, denoted α ∈ A�[T ],
provided α cannot attach τ -stably to any other producible supertile.

A TAS is directed provided it has a unique terminal supertile. Given a con-
nected shape X ⊆ Z2, we say a TAS T self-assembles X if the shape of every
terminal supertile of T is a translation of X.

2.2 Additional 2HAM definitions

Let α0 be a producible supertile that grows into β via the supertile assembly
sequence α0, α1, . . . and let δ be a producible supertile that can combine with α0.
Then β is unfair provided that, for every i ≥ 0, δ can combine with αi but does
not. Otherwise, we say that β is fair. Note that if δ did combine with α, then
the resulting supertile does not necessarily grow into β. Intuitively, if a supertile
is able to bind to another growing supertile at any given step, it eventually does
so if the latter is fair.

A shape is aperiodic provided there exists no non-trivial translation of the
shape that yields itself. That is, the shape has no translational symmetries.
A TAS is aperiodic provided every terminal supertile has an infinite aperiodic
shape.

2.3 2HAM variants

In the two-handed restricted-glue Tile Assembly Model or rg2HAM, glue strengths
come from the set {−1, 0, 1} and there is a unique glue of strength −1. Negative-
strength glues permit producible supertiles α and β such that γ = α + β is not
τ -stable. Producible supertiles that are not τ -stable can break into supertiles
along cuts of strength less than τ . A supertile is terminal provided it cannot
combine with any other producible supertile and cannot break.

In the 3D two-handed Tile Assembly Model or 3D2HAM, tiles are unit cubes.
As in 2D, the tiles do not rotate, and each face of a tile has a glue.

3 Universal Computation in the rg2HAM

In this section, we prove that Turing-universal computation is possible in the
temperature-1 2HAM when a single negative-strength glue is also permitted.
Without such a glue, spurious nucleation would seemingly cause the vast major-
ity of produced supertiles to nucleate as encodings of random configurations of
the Turing machine and run nonsense computations both forward and backward.
This uncountably large sea of undesired supertiles would then dilute supertiles
encoding the desired computation.

Our construction, described in the proof of Theorem 1, utilizes small “jack-
hammer” supertiles that break up the sea of undesired supertiles into constant-
sized terminal supertiles (from a constant-sized set). This “jackhammering” is
carried out on a “zig-zag” simulation of a modified version of the input Turing
machine. Stated formally:
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Theorem 1. Let M be a Turing machine M with tape alphabet Γ . There exists
an equivalent machine M ′′ and tile set T such that for any terminal supertile α
of T = (T, 1) encoding a valid computation of M ′′(x) and fair β ∈ A[T ], either
β is a subassembly of α or β can be broken apart so that every subassembly of β
can grow into a O(log |Γ |)-sized terminal supertile.

To prove Theorem 1, we first define an intermediate machine, M ′. Let M ′ be
a Turing machine which is equivalent to M but with the following modifications:

1. A new end symbol in the tape alphabet.
2. A new set of head symbols in the tape alphabet, one for each element of
{∗} × Γ”.

3. A new set of tape alphabet symbols that have additional markings to denote
that the cells containing them occur to the right of the tape head (with cells
to the left unmarked by these symbols). The new symbols are the elements
of {R} × Γ .

4. The assumption that the initial tape contains the input string x padded by
one copy of end on each side, and with exactly one head symbol denoting
the location of M ’s read/write head along with the value of the tape cell.

The tape alphabet of M ′ has size 3|Γ |+1. M ′ operates in a “zig-zag” manner,
traversing the complete tape from left-to-right, then right-to-left, etc. Each zig
(left-to-right) or zag (right-to-left) traversal carries out at most one step of M ,
doing so only if the traversal direction matches the direction moved by the head.
The left- and rightmost ends of the tape are denoted by the end symbol; each
time the end symbol is reached, the tape is extended by one cell via moving the
end symbol.

During each zig, M ′ begins on the leftmost input character and moves right
until encountering the end symbol. Initially, the leftmost tape cell value contains
the head symbol and all other tape cells contain the R symbol denoting that
they are to the right of the head. The transitions of M ′ are updated versions
of those of M that output values that indicate which side of the head the cell
lies on once the head moves. During traversal, the symbols of all cells that do
not contain the head symbol or are immediately right of such a cell are left
unchanged.

For the cell containing a head symbol (encoding also the tape symbol in M),
if M performs a right-moving transition when in the start state and given the
cell value there, then the value of that cell is updated to the output of that
transition, the cell to the immediate right is updated to contain a head symbol,
and the state of M ′ is updated to encode the new state of M reached after that
transition. Cells not containing the head symbol are left unchanged. Identical
but symmetric behavior is performed during each zag.

We now define another new Turing machine M ′′ equivalent to M ′ but with
the following modifications. Let b = dbin(|Γ ′|+1)e, where Γ ′ is the tape alphabet
of M ′. That is, b is the length of the binary representation of the size of |Γ ′|+ 1.
Since |Γ ′| = 3|Γ | + 1, b = O(log(|Γ |)). The tape alphabet for M ′′ is {0, 1} and
M ′′ simulates M ′ by representing each of the characters, or cell values, of M ′ as
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a binary string of length b, i.e. each element of Γ ′ will be assigned a unique b-bit
binary string between 1 and |Γ ′|, a new pad symbol is represented as 11 . . . 1,
and the end symbol is represented as 00 . . . 0.

Also, M ′′ expects an input tape that encodes (using the previously described
encoding) an input tape of M ′ in binary, but with the pad symbol inserted
between every pair of cell values and starting with a pad symbol on the left
side. M ′′ operates identically to M ′, but reads, writes, and moves using b steps
each, due to encoding each cell of M ′ as b consecutive cells. As M ′′ reads a
“cell” (b consecutive cells) it writes the pad string; M ′′ then writes the cell’s new
symbol in the adjoining pad string, avoiding simultaneous reading and writing of
a cell. Thus after completing each zig or zag, the adjacent cell and pad locations
alternate, seen in Figure 1. In conclusion, M ′′ simulates M using a binary tape
alphabet and a head that moves in a zig-zag manner.

Fig. 1: A high-level overview of the growth and tape cell pattern created by T
as it simulates M(x), by simulating the machine M ′′. The cv elements are tape
cells and pad elements are not.

Next, we create a tile set T such that the rg2HAM system T = (T, 1) has a
unique terminal supertile with size larger than O(b) = O(log |Γ |). This terminal
supertile contains an accurate computational history of M ′′ on the input x′ (and
thus M on input x) and so simulates M(x). The tile set is the union of small
groups of tiles that form functional supertiles called gadgets.

For the analysis of this system, we consider a specific “seeded” growth se-
quence where tiles attach one at a time, starting with a “seed” that grows into
a “seed row” encoding the initial state of the machine, including an input tape.
We prove that all other assembly sequences either result in the same terminal
supertile (correctly representing the computation and containing the seed), or
as “junk” supertiles of size O(| logΓ |).

Figure 2 shows the general structure of gadgets used to form the seed and zig
rows. The first set of tiles to be created for T are those that form the seed row. A
hard-coded set of gadgets is constructed that only bind to each other and in the
correct pattern to encode the seed row: the appropriate binary encoding of x,
interspersed by representations of pad and with encodings of end on the sides).
Next, we construct a similarly hard-coded zag row (Fig. 3a) that can only attach
to the seed row and is also hard-coded. The next set of gadgets are copies of each
of the types of gadgets for zig (Fig. 2b) and zag (Fig. 3a) rows that are specific
to each state of M ′′, so that the current state of M ′′ is transmitted through the
glues and the correct transitions are carried out when at head positions.
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(a) (b)

Fig. 2: (a) Seed row gadgets. (b) Zig row gadgets. Grey gadgets read bits on
the bottom left, and write bits on the top left. Red tabs indicate −1-strength
glues; black and yellow tabs indicate 1-strength glues. The gold gadget is the
final gadget of a row and does not read but writes a 0 to the new row. Note
that for compactness all gold gadgets as depicted write only one 0, but actually
write a sequence of b 0’s on the right (end), then b 1’s to the left of those (pad),
extending the previous row by 2b bits. Arrows only show the direction of growth
if growth began from the seed.

(a) (b)

Fig. 3: (a) Zag row gadgets. Blue and green gadgets read bits on the bottom
right, and write bits on the top right. The gold gadget is the final gadget of a
row and does not read but writes a 0 in the new row. Note that arrows only
show the direction of growth if growth began from the seed. (b) Jackhammer
gadgets. The bottommost is a special type that attaches to a partial seed row
that does not contain the seed.
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Incorrect growth is “jackhammered” apart by using yellow glues (see Fig-
ures 4 and 5) to attach jackhammer and stopper gadgets to attach to the bot-
toms of rows. These gadgets break apart supertiles with bottom rows that are
not the seed row: invalid computations and valid computations spuriously nu-
cleated. Figures 6-8 show an example portion of such a supertile being broken
apart into terminal junk supertiles. The resulting broken off pieces have size
O(log |Γ |).

Figures 4 and 5 depict example supertiles that do and do not represent valid
computations. Figure 6 shows an example of jackhammer gadgets attaching to
a supertile that does not represent (part of) a valid computation.

Fig. 4: An example supertile which has correctly grown five rows upward from
the hard-coded seed (marked with “S”). The arrows show the direction of growth
if growth began from the seed (possible but not necessary).

Fig. 5: A supertile which can be assembled but does not contain the hard-coded
seed row.
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Fig. 6: A few of the locations where (red) jackhammer gadgets can attach. Note
that the single-tile partial jackhammer (middle) is currently blocked from fur-
ther growth. Further breakage by other jackhammers will eventually allow this
jackhammer to complete.

Fig. 7: (Bottom) The minimal supertile which can be separated by the rightmost
jackhammer gadget. (Top) The tiles highlighted in yellow show all additional
tiles that could have detached with it. Note that now the middle jackhammer is
free to grow, and also that the leftmost jackhammer (and any which attach to
gadgets at the end of rows) is not able to break off any supertile.
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Fig. 8: (Top) The separated supertile from Figure 7 with the attachment of an-
other jackhammer gadget (as well as a portion of a stopper gadget in pink)
causing it to break into two pieces. On each of those pieces the stopper gadgets
grow. (Left) Orange highlighted portion shows partial regrowth of the row gad-
get, but the stopper gadget (pink) completes its growth, preventing any more
of its growth. (Right) Orange highlighted portions show regrowth of row gad-
gets, stopper gadget growth is toward potential contention locations (yellow
highlighted). If the stopper gadget grows into both of those locations first, the
supertile becomes terminal, otherwise further row gadget growth creates a new
location where another jackhammer can attach and split the supertile, eventually
allowing the stopper gadget to block further growth.

4 Efficient Square Assembly in the Temperature-1
3D2HAM

Here we augment the 2HAM with a third dimension, rather than negative-
strength glues, and prove that the additional geometric freedom permits efficient
assembly of squares that are one or two layers in the third dimension. More pre-
cisely, the construction uses O(log2 n) tile types to assemble terminal supertiles
that all have a n× n× 2 bounding box and have a unique n× n projection into
two dimensions. Let Nn−1 = {0, . . . , n− 1}. Formally stated:

Theorem 2. There exists a tile set T with |T | = O(log2 n) such that the 3D2HAM
system T = (T, 1) self-assembles a shape Sn with N2

n−1 × {0} ⊆ Sn ⊆ N2
n−1 ×

{0, 1}.

Proof. The construction begins with the temperature 1 3D aTAM counter of
Cook, Fu, and Schweller [7]. This counter simulates the classic temperature-2
zig-zag style counter [17] (see also Section 3 by replacing cooperative binding
with geometric blocking.
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This counter fails in the the 3D2HAM in two ways. First, all digits of the
counter use a common constant-sized set of tiles. In the 3D2HAM, this enables
counter rows of unbounded length to grow. Replacing the common tile set with
distinct tile sets for each bit of the counter limits rows to exactly the desired
quantity of Θ(log n) bits.

The second failure is more fundamental: correct growth is only guaranteed
when growth starts from the seed and proceeds forward. In the temperature-1
2HAM, assembly can spuriously nucleate at any tile type, allowing the counter
to grow backwards from any row. This can lead to erroneous supertiles that
increment incorrectly.

As a remedy, we use a cyclic counter consisting of two instances of the counter
design of Figure 10 that grow in opposite directions and initiate the growth of
each other upon completion. See Figure 9 for a schematic of the cyclic counter.

1
1
0

1
0
1

1
1
0

1
1
1

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0
0
1

0
0
0

0
0
0

Counter 1

Counter 2

Fig. 9: The cyclic counter combines two forward growth counters that seed each
other upon completion. Erroneous backward growth (red) halts, while forward
growth proceeds until the crashing into the error to yield a full-length terminal
supertile.

Each counter is also modified to halt backwards growth when such growth
makes an error. These ideas together resolve the problem of backwards growth, as
failed backwards growth is eventually met by (correct) forward growth around
the two-counter cycle that necessarily includes a complete correct counter. A
fully formed counter is seen in Figure 10. Due to space constraints, the details
of how backward growth is halted are omitted.

Assembling n×n squares. The cyclic counter counts correctly using O(log n) tile
types, but only to values of n that are powers of 2. A counter for a non-power-of-
2 value n involves concatenating up to O(log n) distinct cyclic counters, one for
each 1-bit of the binary representation of n. Each counter uses O(log n) distinct
tile types, and the counters are padded to a common width. Thus n × O(log n)
rectangular supertiles for arbitrary n can be assembled using O(log2 n) tile types.

Such rectangles are assembled into squares by using one rectangle as a back-
bone and attaching additional rectangles to the backbone at regular O(log n)
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...

Fig. 10: Forward (left-to-right) growth occurs as in the counter of [7]. The
counter value in each column is incremented by reading the geometry of the col-
umn to its left. White and grey blocks denote 0 and 1 bits, respectively. Smaller
and larger squares denote tiles in the z = 1 and z = 0 layers, respectively.

intervals. Such spacing can be achieved by modification of the counter to place
a special glue based on the values of the least significant log log n bits of the
counter.

ut

5 An Aperiodic 3D τ = 1 2HAM system

Here we describe an aperiodic system in the three-dimensional 2HAM at temper-
ature 1, complementing the efficient square construction of the previous section.

Theorem 3. There exists an aperiodic 3D2HAM system T = (T, 1).

Proof. Let the aTAM TAS Tcount = (Tcount, σ
′, 2) be the well-known system that

assembles a “zig-zag” binary counter [17] and let αterm ∈ A�[Tcount]. Our system
T assembles an infinite set of infinite terminal supertiles, each consisting of two
reflected scaled versions of αterm and some extra “junk”.

For every α ∈ A[Tcount] there is a supertile in A[T ] corresponding to α and
composed of macrotiles: scaled versions of tiles in α where some tile glues are
replaced by geometric “dents” and “bumps” encoding the glue’s type in binary.
Figure 11 shows how glues are replaced by “bit-reading” geometry.

Macrotiles bind to form arbitrarily long strips corresponding to binary counter
rows in Tcount, including end macrotiles that match the tiles at the ends of each
row. Two strips encoding adjacent binary values can attach vertically via glues
on their end macrotiles and matching geometry (see Figure 12).

As in the binary counter of Section 4, the forward growth of the counter is al-
ways correct. Thus any assembly in A[T ] containing the macrotile corresponding
to the seed of Tcount corresponds to a subassembly of αterm.
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0 1

0 1

a)

b)

c)

Fig. 11: (a) The bit-readers. Only one of them can assemble after “reading” a
bit-writer. The olive-colored tiles attempt to grow both the aqua and yellow
tiles but the geometry presented by the bit-writers prevent one of the paths
from growing. (b) The two bit-writers. (c) An example of bit-readers “reading”
two bit-writers. Smaller and larger squares denote tiles in the z = 1 and z = 0
layers, respectively.
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Fig. 12: A producible assembly of Tcount and corresponding macrotile schematic
diagram. The geometry of the macrotiles in adjacent strips ensure that adjacent
rows encode incremented binary values.

Recall that the aim of T is to assemble only aperiodic terminal assemblies.
Currently, T has (aperiodic) binary counter and (periodic) counter rows terminal
supertiles. Dealing with the infinite periodic rows produced by the (necessarily)
unlimited growth is the primary difficulty of the construction. As a solution, two
mirrored copies of the counter tile set with identical behavior and disjoint glues
are combined and modified to ensure infinite periodic supertiles of one attaching
to the aperiodic supertiles of the other. Due to space constraints, we only sketch
the implementation of this idea.

Let T1 be the the tile types described in T thus far and β1 be the terminal
supertile corresponding to αterm assembled from these tile types. Then T =
(T1 ∪ T2, 1), where T2 are tile types with glues disjoint from those in T1 that
form a vertically reflected version of β1 called β2. Let S1 be the macrotile in β1
corresponding to the seed in T ′count and let S2 be the counterpart of S1 in β2. A
maroon glue is added to the south face of the southernmost tile of each macrotile
in β1, unless the macrotile corresponds to the seed of T ′count, where a red glue is
added. Similarly, a red glue is added to the north face of the northernmost tile
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of each macrotile in β2, unless the macrotile corresponds to the seed of Tcount,
where a maroon is added.

Fig. 13: The moderately shaded regions represent the scaled up macrotile version
of the counter supertile and its reflection. The darkly shaded tiles are strips of
tiles which expose a maroon glue and the lightly shaded tiles are strips of tiles
which expose a red glue.

Any infinitely long strip is not terminal unless an infinite number of seeds (of
the reflected system) bind to their red or maroon glues (see Figure 13). Moreover,
at least one of these seeds must be contained in an infinite counter. Thus every
terminal supertile has β1 or β2 as a subassembly and so all terminal supertiles
of T are aperiodic. ut
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