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Open Guard Edges and Edge Guards in Simple Polygons
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Abstract

An open edge of a simple polygon is the set of points in
the relative interior of an edge. We revisit several art
gallery problems, previously considered for closed edge
guards, using open edge guards. A guard edge of a poly-
gon is an edge that sees every point inside the polygon.
We show that every simple non-starshaped polygon ad-
mits at most one open guard edge, and give a simple
new proof that it admits at most three closed guard
edges. We characterize open guard edges, and derive an
algorithm that finds all open guard edges of a simple
n-gon in O(n) time in the RAM model of computation.
Finally, we present lower bound constructions for simple
polygons with n vertices that require bn/3c open edge
guards, and conjecture that this bound is tight.

1 Introduction

Let P be a simply connected closed polygonal domain
with n vertices. Two points p, q ∈ P are mutually visible
to each other if the closed line segment pq lies in P . In
a starshaped polygon P , all points in P are visible from
a single point x ∈ P , which is called a guard point for
P . The set of all guard points is the kernel of P .

For a set S ⊆ P of multiple guards, or the trajectories
of mobile guards, we adopt the notion of weak visibil-
ity [2]. A point p ∈ P is (weakly) visible to a set S ⊆ P
if it is visible from some point in S. If every point p ∈ P
is (weakly) visible from S, then S is a guard set.

Park et al. [8] considered guard sets restricted to
(closed) edges of a polygon. They proved that a non-
starshaped simple polygon has at most three closed
guard edges, and this bound is tight. They also de-
signed an O(n) time algorithm for finding all closed
guard edges in a simple n-gon. Later, it was shown
that a shortest guard segment along the boundary of
P , or anywhere in P can also be found in optimal O(n)
time [3, 4]. A watchman tour is a closed curve γ ⊂ P
which is a guard set for P . Tan [11] gave an O(n5) time
algorithm for finding a shortest watchman tour.
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If several guards are available, we are interested in
the minimum number of guards that can jointly cover
any simple polygon with n vertices. By a classical result
of Klee, a set of bn/3c vertex guards are always suffi-
cient and sometimes necessary to cover a simple n-gon.
It is known that bn/4c closed edge guards are sometimes
necessary, and b3n/10c+1 are always sufficient [9]. It is
a longstanding conjecture that bn/4c+O(1) closed edge
guards are always sufficient. However, bn/4c (open or
closed) segment guards are always sufficient and some-
times necessary [7].
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Figure 1: The region visible by an open edge uv (left) and
a closed edge uv (right) in a simple polygon.

Viglietta [12] recently suggested the use of open edge
guards for various scenarios. A closed edge includes the
endpoints, and an open edge does not. See Fig. 1. In-
tuitively, a closed edge can “see around the corner” if
its endpoint is a reflex vertex, while an open edge can-
not. In this note, we examine two art gallery prob-
lems involving edges of polygons. First, guard edges of
a polygon; single edges that guard the entire polygon.
Then we consider edge guards; sets of edges that to-
gether guard the entire polygon.

2 Preliminaries

It is easy to express visibility in terms of shortest paths
in a simple polygon (c.f., [1]). Given two points, p and
q, inside a simple polygon P , the geodesic path(p, q) is
the shortest directed path from p to q that lies entirely
in P . Points p and q see each other iff path(p, q) is a
straight line segment. Every interior vertex of path(p, q)
is a reflex vertex of P . We characterize weak visibility
between a point and an edge in terms of geodesics.

Lemma 1 Let p be a point inside a simple polygon P .

(a) Point p is visible from an open edge uv iff p is the
only common vertex of path(p, u) and path(p, v);

(b) p is visible from a closed edge uv iff all common
vertices of path(p, u) and path(p, v) are in {p, u, v}.
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Proof. (a) If p is the only common vertex of the two
geodesics, then uv, path(p, u), and path(p, v) form a
pseudo-triangle lying in P with corners p, u and v. Each
corner of a pseudo-triangle is weakly visible from the op-
posite side, hence p is visible from a point in uv (Fig. 2,
left). If q 6= p is the last common vertex of the two
geodesics, then q is an interior point of every geodesic
from p to any w ∈ uv, hence p is not visible from any
point of the open edge uv (Fig. 2, middle).
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Figure 2: The geodesics path(p, u) and path(p, v). Left: p is
the only common vertex of path(p, u) and path(p, v). Mid-
dle: the common vertices are p and q. Right: The common
vertices are p and v.

(b) If p is the only common vertex of the two
geodesics, then p is visible from an interior point of uv
as in part (a). If u or v is the only common vertex (apart
from p) of the two geodesics, then point p is directly vis-
ible from u or v (Fig. 2, right). Finally, if q 6∈ {p, u, v}
is a common vertex of the two geodesics, then q is an
interior point of every geodesic from p to any w ∈ uv,
and hence p is not visible from any point of the closed
edge uv. �

3 Open Guard Edges

In this section we consider open guard edges. Observe
that every edge of a convex polygon is a guard edge,
since it lies in the kernel of the polygon; but there may
be up to n/4 open guard edges even if all edges are
disjoint from the kernel (Fig. 3, left). In this section,
we show that every non-starshaped simple polygon has
at most one open guard edge. This bound is tight, as
shown by the example in Fig. 3, right.
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Figure 3: Left: a starshaped n-gon P with n/4 open guard
edges where the kernel lies in the interior of P . Right: a
non-starshaped polygon with one open guard edge.

We prove the upper bound by contradiction: we prove
that a simple polygon with at least two open guard
edges is starshaped. Let P be a simple polygon, and

suppose that edges ab and cd are open guard edges. We
may assume without loss of generality that a, b, c, d
are in counterclockwise order along the boundary of P
(possibly, b = c or d = a).

Lemma 2 path(b, c) and path(a, d) are disjoint.
path(a, c) = ac and path(b, d) = bd are line segments.

Proof. Note that ab, path(b, c), cd, and path(a, d) form
a geodesic quadrilateral Q. Every geodesic between a
point in ab and a point in cd lies in Q. If path(b, c) and
path(a, d) have a common interior vertex q, then a or b
is not visible from the open edge cd by Lemma 1, and so
cd cannot be a guard edge. We conclude that path(b, c)
and path(a, d) are disjoint, and Q is a simple polygon.

The geodesics path(a, c) and path(b, d) lie inQ, so any
interior vertex of path(a, c) and path(b, d) is a vertex of
Q. If an interior vertex of path(a, c) is in path(b, c), then
c is not visible from ab. Similarly, if an interior vertex of
path(a, c) is in path(a, d), then a is not visible from cd.
Hence, path(a, c) has no interior vertices. Analogous
argument shows that path(b, d) has no interior vertices,
either. �

Lemma 3 The intersection point x = ac ∩ bd is in the
kernel of P .

Proof. Refer to Fig. 4. It is enough to show that an
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Figure 4: A schematic of the proof that a simple polygon
with two open guard edges must be starshaped. The guard
edges are ab and cd. The point x = ac ∩ bd is in the kernel
of the polygon, since every point p ∈ P is visible from x.

arbitrary point p in polygon P is visible from x. By
Lemma 2, ac and bd are diagonals of P . The trian-
gles ∆(abx) and ∆(cdx) lie inside P . If p ∈ ∆(abx) or
p ∈ ∆(cdx), then segment px lies in the same triangle.
Assume now that p is outside of both triangles. Since ab
and cd are open guard edges, p sees some points in their
relative interiors, say o ∈ ab and q ∈ cd. The quadri-
lateral Q = (o, p, q, x) is simple, and so it lies inside P .
Note that Q has convex vertices at o and q. No matter
whether Q is a convex or a non-convex quadrilateral, its
diagonal px lies inside Q, and hence inside P . �

Theorem 4 Every non-starshaped simple polygon has
at most one open guard edge.
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Proof. If a simple polygon has two open guard edges,
then it has a nonempty kernel by Lemma 3, and thus
is starshaped. So every non-starshaped simple polygon
has at most one open guard edge. �

Remark. The upper bound of Theorem 4 does not
apply to polygons with holes. Note that an open edge on
the boundary of a hole cannot see the entire boundary of
the hole. So all open edge guards are on the boundary
of the outer polygon. By the result in [8] there are
at most 3 closed guard edges on the outer boundary
of a polygon with holes. Since every open guard edge
is a closed guard edge, as well, a polygon with holes
has at most 3 open guard edges. This upper bound
is tight, as shown by the following simple construction.
Let the outer polygon and a hole be two centrally dilated
triangles. Then all three open edges of the outer polygon
are guard edges.

4 Closed Guard Edges

In this section, we extend the argument of the previous
section to give a short proof for the following result of
Park et al. [8].

Theorem 5 ([8]) Every non-starshaped simple poly-
gon has at most three closed guard edges.

We proceed by contradiction, and show that the pres-
ence of four closed guard edges implies that the polygon
is starshaped. Let P be a simple polygon where g1, g2,
g3, and g4, in counterclockwise order, are guard edges.
Let g1 = ab and g3 = cd such that a, b, c, and d are in
counterclockwise order along P . Note that the vertices
a, b, c, and d are distinct.

Lemma 6 The geodesics path(b, c) and path(a, d) are
disjoint; and all vertices of the geodesics path(a, c) and
path(b, d) are in {a, b, c, d}.

Proof. Consider the geodesic quadrilateral Q formed
by ab, path(b, c), cd, and path(a, d). Every geodesic
between a point in ab and a point in cd lies in Q. Sup-
pose that an interior vertex q of path(b, c) is a vertex of
path(a, d). If q = a or an interior vertex of path(a, d),
then b is not visible from the closed edge cd by Lemma 1.
Similarly, if q = d, then c is not visible from the closed
edge ab. We conclude that path(b, c) and path(d, a) are
disjoint, and Q is a simple polygon.

The geodesics path(a, c) and path(b, d) lie inQ, so any
interior vertex of path(a, c) and path(b, d) is a vertex of
Q. If path(a, c) and path(b, c) have a common interior
vertex, then c is not visible from ab. Similarly, no two
geodesics from {a, b} to {c, d} can have any common
interior vertex. Hence all interior vertices of path(a, c)
and path(b, d) are in {a, b, c, d}. �

Corollary 7

• If {a, b, c, d} is in convex position, then path(a, c) =
ac and path(b, d) = bd. Fig. 5, left.

• Otherwise suppose w.l.o.g. that conv({a, b, c, d}) =
∆(abc). Then path(a, c) = (a, d, c) and
path(b, d) = bd. Fig. 5, right.
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Figure 5: The convex hull of two closed guard edges, ab and
cd, is either a quadrilateral or a triangle.

Lemma 8 The intersection point x = path(a, c) ∩
path(b, d) is in the kernel of P .

Proof. It is enough to show that an arbitrary point p in
polygon P is visible from x. By Corollary 7, the trian-
gles ∆(abx) and ∆(cdx) lie inside P (one of the triangles
may be degenerate). If p is in ∆(abx) or ∆(cdx), then
segment px lies in the same triangle. Refer to Fig. 6.
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Figure 6: A schematic of the proof that a simple polygon
with four closed guard edges must be starshaped. Suppose
that g1 = ab, g2, g3 = cd, and g4 are guard edges. If a point
p ∈ P is not visible from x = path(a, c)∩path(b, d), then we
show that p is also not visible from g2 or g4.

Assume now that p is outside of both triangles and,
w.l.o.g. it is on the right side of the directed geodesics
path(a, c) and path(b, d). That is, p and the guard edge
g4 are on opposite sides of these geodesics.

If path(p, x) = px, then p is visible from x. Suppose,
to the contrary, that path(p, x) is not a straight line
segment. Assume w.l.o.g. that path(p, x) makes a right
turn at its last interior vertex q. Then path(p, d) also
makes a right turn at q. Since p is visible from the
guard edge cd, we must have q = c by Lemma 1(b).
Recall that any geodesic from p to a point in g4 crosses
both path(a, c) and path(b, d). Since path(p, x) makes
a right turn at c, every geodesic from p to a point in
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g4 also make a right turn at c. However, c is disjoint
from g4, and by Lemma 1(b), p is not visible from g4,
contradicting our initial assumption. We conclude that
path(p, x) is a straight line segment, and so p is visible
from x. �

Proof of Theorem 5. If a simple polygon has four
closed guard edges, then it has a nonempty kernel
by Lemma 8, and thus is starshaped. So every non-
starshaped simple polygon has at most three closed
guard edges. �

5 Characterizing Open Guard Edges

In this section, we characterize the open guard edges of a
simple polygon P in terms of the left and right kernels
of P (defined below). This leads to a straightforward
algorithm to find all open guard edges in P .

Left and right kernels. Recall that the set of points
from which the entire polygon P is visible is the kernel,
denoted K(P ), which is the intersection of all halfplanes
bounded by a supporting line of an edge of P and fac-
ing towards the interior of P . Lee and Preparata [5]
designed an optimal O(n) time algorithm for comput-
ing the kernel of simple polygon with n vertices. We
now define a weaker version of the kernel: the left and
right kernels of P , denoted Kleft(P ) and Kright(P ).

For every reflex vertex r, we define two polygons
Cleft(r) ⊂ P and Cright(r) ⊂ P . Shoot a ray from r in
a direction collinear with the edge incident to r preced-
ing (resp., following) r in counterclockwise order; and
let Cleft(r) (resp., Cright(r)) be the part of P on the left
(resp., right) of the ray. These polygons have previously
been defined in [3]. It is clear that if P is weakly visible
from a set S ⊂ P , then S must intersect both Cleft(r)
and Cright(r) for every reflex vertex r.

Now we define Kleft(P ) as the intersection of polygons
Cleft(r) for all reflex vertices r; and Kright(P ) as the
intersection of polygons Cright(r) for all r. See Fig. 7
for an example. Clearly, we have

K(P ) = Kleft(P ) ∩Kright(P ).

By construction, both Kleft(P ) and Kright(P ) are con-
vex polygons, whose edges are collinear with some of
the edges of P .

Left and right kernel decompositions. In the fol-
lowing lemma we use two decompositions of a polygon
based on its left and right kernels. The left kernel de-
composition is the decomposition of the polygonal do-
main P in the following way: One cell of the decom-
position is the left kernel Kleft(P ). The region inside P
but in the exterior of Kleft(P ) is decomposed by extend-
ing each edge of Kleft(P ) in clockwise direction. Refer
to Fig. 7. Since Kleft(P ) lies on the left side of rays

Kleft(P )

P
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P

Figure 7: The left and right kernels of a polygon. The
dotted lines bound some polygons Cleft(r) and Cright(r), but
they are not part of the kernel decompositions.

emitted from reflex vertices of P , the clockwise exten-
sion of every edge of Kleft(P ) reaches a collinear edge
of P . The right kernel decomposition is defined anal-
ogously: one cell is Kright(P ), and the rest of P is de-
composed by counter-clockwise extensions of the edges
of Kright(P ). Note that if an open edge of P is dis-
joint from the left kernel, then it is adjacent to a unique
region of the left kernel decomposition. Additionally,
each region of the decomposition, except for Kleft(P ),
has exactly one common edge with the left kernel.

Lemma 9 An open edge e of a simple polygon P is a
guard edge of P iff e intersects both the left and the right
kernels of P .

Proof. Let e = uv be an open edge of P . First assume
that e is disjoint from the left kernel Kleft(P ). Then e
is adjacent to a unique region in the left kernel decom-
position of P . This region is adjacent to a unique edge
k of Kleft(P ), and k lies on a ray emitted by a reflex
vertex r on P . Then e and the polygon Cleft(r) lies on
opposite sides of the supporting line of k. Hence e does
not intersect Cleft(r), and so it is not a guard edge.

Now assume that e = uv is not a guard edge, that
is, there is a point p ∈ P such that p is not visible
from e. By Lemma 1(a), the geodesics path(p, u) and
path(p, v) have common interior vertices. Let r be their
last common vertex, which is necessarily a reflex vertex
of P , and assume w.l.o.g. that both geodesics make a
right turn at r. Then p ∈ Cleft(r), but e is disjoint from
Cleft(r). That is, e is disjoint from the left kernel of
P . �

Finding all open guard edges in O(n) time. We
use Lemma 9 to create a simple O(n) time algorithm for
finding all open guard edges of a simple polygon P with
n vertices (independent of whether P is starshaped or
not). The left and right kernels of P can be computed in
O(n) time using a modified version of the algorithm of
Lee and Preparata [5], originally designed for computing
the kernel K(P ). For each edge of the left and right
kernels, mark any intersection with the collinear edge
of P . Now check the marks on all edges of P in O(n)



CCCG 2011, Toronto ON, August 10–12, 2011

time, and report those that intersect both the left and
the right kernels.

6 Open Edge Guards

Recall that every simple polygon with n vertices can be
covered by b3n/10c+1 closed edge guards, and there are
n-gons that require at least bn/4c closed edge guards. It
turns out that the endpoints of the closed edge guards
are crucial for these bounds. Significantly more edge
guards may be necessary if the endpoints are removed.

We construct four different infinite families of poly-
gons that require bn/3c open edge guards for n vertices.
Refer to Fig. 8. The lower bounds for all our construc-
tions can be verified by a standard “hidden point” ar-
gument. We hide bn/3c points (gray dots in Fig. 8) in
the interior of a polygon such that each open edge guard
sees exactly one such point. That is, each hidden point
requires a unique open edge guard, and any set of fewer
than bn/3c open edge guards would miss at least one
hidden point.

It is not difficult to see that bn/2c open edge guards
are always sufficient. Partition the set of edges of the
polygon into two subsets for which the interior nor-
mals of the edges have either a positive or negative y-
component. Each subset of open edges jointly covers
the entire polygon. We conjecture this upper bound is
weak, and that bn/3c is the tight bound for the number
of open edge guards necessary and sufficient to guard
any simple polygon with n vertices.
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