
Staged Self-Assembly and

Polyomino Context-Free Grammars

A dissertation submitted by

Andrew Winslow

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

Tufts University

February 2014

c©2013, Andrew Winslow

Advisors: Diane Souvaine, Erik Demaine



Abstract

Self-assembly is the programmatic design of particle systems that coalesce

into complex superstructures according to simple, local rules. Such systems

of square tiles attaching edgewise are capable of Turing-universal computa-

tion and efficient construction of arbitrary shapes. In this work we study the

staged tile assembly model in which sequences of reactions are used to encode

complex shapes using fewer tile species than otherwise possible. Our main

contribution is the analysis of these systems by comparison with context-free

grammars (CFGs), a standard model in formal language theory. Considering

goal shapes as strings (one dimension) and labeled polyominoes (two dimen-

sions), we perform a fine-grained comparison between the smallest CFGs and

staged assembly systems (SASs) with the same language.

In one dimension, we show that SASs and CFGs are equivalent for a small

number of tile types, and that SASs can be significantly smaller when more tile

types are permitted. In two dimensions, we give a new definition of generalized

context-free grammars we call polyomino context-free grammars (PCFGs) that

simultaneously retains multiple aspects of CFGs not found in existing defini-

tions. We then show a one-sided equivalence: for every PCFG deriving some

labeled polyomino, there is a SAS of similar size that assembles an equiva-

lent assembly. In the other direction, we give increasingly restrictive classes

of shapes for which the smallest SAS assembling the shape is exponentially

smaller than any PCFG deriving the shape.



Dedicated to my mom.

ii



Acknowledgments

They were two, they spoke little, wanted to repeat the calm, take time

to nap. They had a clear idea of what they wanted, what arrangement,

which room, what sound, and showed impassive faces to our attempts

to impose our rhythm. We used to run the Soirées de Poche, pushing

and motivating artists, warming up the audience, writing an outline.

But then, no, we were not the masters.

– Vincent Moon, Soirée de Poche

Funding for my research was provided by NSF grants CCF-0830734, CBET-

0941538, and a Dean’s Fellowship from Tufts University. Additional travel

funding was provided by Caltech and the Molecular Programming Project

for a visit during Summer 2012, and a number of government and industry

sources to attend the Canadian Conference on Computational Geometry, Fall

Workshop on Computational Geometry, and the International Conference on

DNA Computing and Molecular Programming. I also thank Tufts Univer-

sity and the Department of Computer Science for providing accommodations

throughout my time in Medford, and the Bellairs Research Institute of McGill

University for accommodations in Barbados.

Even more than funding sources, I am deeply grateful to a large number

of researchers and collaborators who provided me with mentorship, encour-

agement, and assistance. Foremost, my advisors Diane Souvaine and Erik

iii



Demaine, along with my other committee members Lenore Cowen, Benjamin

Hescott, and Hyunmin Yi. The Tufts-MIT Computational Geometry meeting

and its many participants were instrumental in shaping my research experi-

ence, and I thank the many participants, including Martin Demaine, Sarah

Eisenstat, David Charlton, Zachary Abel, Anna Lubiw, and too many others

to list. I also thank the students and visiting faculty at Tufts University for

many productive collaborations, including Gill Barequet, Godfried Toussaint,

Greg Aloupis, Sarah Cannon, Mashhood Ishaque, and Eli Fox-Epstein. Not

least of all, I thank tile self-assembly friends and collaborators who invited

me into their circle: Damien Woods, Matthew Patitz, Robert Schweller, and

Scott Summers – may the tiles forever assemble in their favor.

They say that the best art comes from misery. I thank Christina Birch

for helping to make the first two years of graduate school possibly the most

productive time in my life. I also specifically thank Erik and Marty Demaine

for providing crucial support at several key times during my study, and being

a source of much needed inspiration and perspective. Finally, I thank Megan

Strait for being a core part of my life and time at Tufts, for playing an irre-

placeable role in the days that produced the work contained herein, and for

showing me what real perseverance is.

iv



Contents

1 Introduction 1

1.1 Tile assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Two-handed assembly . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Staged self-assembly . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Combinatorial optimization . . . . . . . . . . . . . . . . . . . 6

1.5 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Context-Free Grammars 10

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The smallest grammar problem . . . . . . . . . . . . . . . . . 13

2.3 Grammar normal forms . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Chomsky normal form (CNF) . . . . . . . . . . . . . . . . . . 19

2.5 2-normal form (2NF) . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Bilinear form (2LF) . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 APX-hardness of the smallest grammar problem . . . . . . . . 23

3 One-Dimensional Staged Self-Assembly 25

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The Smallest SAS Problem . . . . . . . . . . . . . . . . . . . . 30

3.3 Relation between the Approximability of CFGs and SSASs . . 37

3.3.1 Converting CFGs to SSASs . . . . . . . . . . . . . . . 37

v



3.3.2 Converting SSASs to CFGs . . . . . . . . . . . . . . . 39

3.4 CFG over SAS Separation . . . . . . . . . . . . . . . . . . . . 41

3.4.1 A set of strings Sk . . . . . . . . . . . . . . . . . . . . 42

3.4.2 A SAS upper bound for Sk . . . . . . . . . . . . . . . . 44

3.4.3 A CFG lower bound for Sk . . . . . . . . . . . . . . . . 47

3.4.4 CFG over SAS separation for Sk . . . . . . . . . . . . . 49

3.5 Unlabeled Shapes . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Polyomino Context-Free Grammars 56

4.1 Polyominoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Smallest common superpolyomino problem . . . . . . . 59

4.1.3 Largest common subpolyomino problem . . . . . . . . 66

4.1.4 Longest common rigid subsequence problem . . . . . . 73

4.2 Existing 2D CFG definitions . . . . . . . . . . . . . . . . . . . 76

4.3 Polyomino Context-Free Grammars . . . . . . . . . . . . . . . 79

4.3.1 Deterministic CFGs are decompositions . . . . . . . . . 80

4.3.2 Generalizing decompositions to polyominoes . . . . . . 80

4.3.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 The Smallest PCFG Problem . . . . . . . . . . . . . . . . . . 83

4.4.1 Generalizing smallest CFG approximations . . . . . . . 83

4.4.2 The O(log3 n)-approximation of Lehman . . . . . . . . 84

4.4.3 The mk lemma . . . . . . . . . . . . . . . . . . . . . . 84

4.4.4 A O(n/(log2 n/ log log n))-approximation . . . . . . . . 85

5 Two-Dimensional Staged Self-Assembly 88

5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 The Smallest SAS Problem . . . . . . . . . . . . . . . . . . . . 91

vi



5.3 The Landscape of Minimum PCFGs, SSASs, and SASs . . . . 96

5.4 SAS over PCFG Separation Lower Bound . . . . . . . . . . . 97

5.5 SAS over PCFG Separation Upper Bound . . . . . . . . . . . 99

5.6 PCFG over SAS and SSAS Separation Lower Bound . . . . . . 112

5.6.1 General shapes . . . . . . . . . . . . . . . . . . . . . . 112

5.6.2 Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6.3 Squares . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6.4 Constant-glue constructions . . . . . . . . . . . . . . . 132

6 Conclusion 133

Bibliography 135

vii



List of Figures

1.1 A temperature-1 tile assembly system with three tile types and

two glues. Each color denotes a unique glue, and each glue

forms a bond of strength 1. . . . . . . . . . . . . . . . . . . . 2

1.2 Top: a seeded (aTAM) temperature-1 tile assembly system that

grows from a seed tile (gray) to produce a 5-tile assembly. Bot-

tom: the same tile set without seeded growth produces a second,

4-tile assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 A τ = 1 self-assembly system (SAS) defined by its mix graph

and tile set (left), and the products of the system (right). Tile

sides lacking a glue denote the presence of glue 0, which does

not form positive-strength bonds. . . . . . . . . . . . . . . . . 29

3.2 A one-dimensional τ = 1 self-assembly system in which only

east and west glues are non-null. . . . . . . . . . . . . . . . . . 30

3.3 The mix graph for a SAS producing an assembly with label

string S3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 A polyomino P and superpolyomino P ′. The polyomino P ′ is a

superpolyomino of P , since the translation of P by (5, 5) (shown

in dark outline in P ′) is compatible with P ′ and the cells of this

translation are a subset of the cells of P ′. . . . . . . . . . . . . 58

viii



4.2 An example of the set of polyominoes generated from an input

graph by the reduction in Section 4.1.2. . . . . . . . . . . . . . 60

4.3 An example of a 4-deck superpolyomino and corresponding 4-

colored graph. Each deck is labeled with the input polyominoes

the deck contains, e.g. the leftmost deck is the superpolyomino

of overlapping P1 and P7 input polyominoes. . . . . . . . . . . 61

4.4 The components of universe polyominoes and set gadgets used

in the reduction from set cover to the smallest common super-

polyomino problem. . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 An example of the set of polyominoes generated from the in-

put set {{1, 2}, {1, 4}, {2, 3, 4}, {2, 4}} by the reduction from set

cover to the smallest common superpolyomino problem. . . . . 64

4.6 The smallest common superpolyomino of the polyominoes in

Figure 4.5, corresponding to the set cover {S1, S3}. . . . . . . 65

4.7 An example of the set of polyominoes generated from an input

graph by the reduction in Section 4.1.3. . . . . . . . . . . . . . 68

4.8 An example of a corresponding largest subpolyomino and max-

imum independent set (top) and locations of the subpolyomino

in each polyomino produced by the reduction. . . . . . . . . . 69

4.9 Two shearing possibilities (middle and right) resulting from ap-

plying the production rule A→ cc. . . . . . . . . . . . . . . . 77

4.10 Each production rule in a PCFG deriving a single shape can

be interpreted as a partition of the left-hand side non-terminal

shape into a pair of connected shapes corresponding to the pair

of right-hand side symbols. . . . . . . . . . . . . . . . . . . . . 81

5.1 The 28-staggler specified by the sequence of offsets (from top to

bottom) −18, 13, 9,−17,−4, 12,−10. . . . . . . . . . . . . . . 98

ix



5.2 A binary counter row constructed using single-bit constant-sized

assemblies. Dark blue and green glues indicate 1-valued carry

bits, light blue and green glues indicate 0-valued carry bits. . . 100

5.3 The prefix tree T(0,15) for integers 0 to 24 − 1 represented in

binary. The bold subtree is the prefix subtree T(5,14) for integers

5 to 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 The mix graph constructed for the prefix subtree T(5,14) seen in

Figure 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Converting a tile in a system with 7 glues to a macrotile with

O(log |G|) scale and 3 glues. The gray label of the tile is used as

a label for all tiles in the core and macroglue assemblies, with

the 1 and 0 markings for illustration of the glue bit encoding. 106

5.6 A macrotile used in converting a PCFG to a SAS, and examples

of value maintenance and offset preparation. . . . . . . . . . . 108

5.7 Two-bit examples of the weak (left), end-to-end (upper right),

and block (lower right) binary counters used to achieve separa-

tion of PCFGs over SASs and SSASs in Section 5.6. . . . . . . 112

5.8 Zoomed views of increment (top) and copy (bottom) counter

rows described in [DDF+08a] and the equivalent rows of a weak

counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.9 A zoomed view of adjacent attached rows of the counter de-

scribed in [DDF+08a] (top) and the equivalent rows in the weak

counter (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 The rectangular polyomino used to show separation of PCFGs

over SASs when constrained to constant-label rectangular poly-

ominoes. The green and purple color strips denote 0 and 1 bits

in the counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

x



5.11 The implementation of the vertical bars in row 2 (01b) of an

end-to-end counter. . . . . . . . . . . . . . . . . . . . . . . . . 117

5.12 The decomposition of bars used assemble a b-bit end-to-end

counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.13 A schematic of the proof that a non-terminal is a minimal row

spanner for at most one unique row. (Left) Since pB and pC

can only touch in D, their union non-terminal N must be a

minimal row spanner for the row in D. (Right) The row’s color

strip sequence uniquely determines the row spanned by N (01b). 121

5.14 The square polyomino used to show separation of PCFGs over

SASs when constrained to constant-label square polyominoes.

The green and purple color subloops denote 0 and 1 bits in the

counter, while the light and dark blue color subloops denote the

start and end of the bit string. The light and dark orange color

subloops indicate the interior and exterior of the other subloops. 124

5.15 The implementation of rings in each block of the block counter. 125

5.16 The decomposition of vertical display bars used to assemble

blocks in the b-bit block counter. Only the west bars are shown,

with east bars identical but color bits and color loops reflected. 126

5.17 The decomposition of vertical start and end bars used to assem-

ble blocks in the b-bit block counter. . . . . . . . . . . . . . . 127

5.18 The decomposition of horizontal slabs of each ring the b-bit

block counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.19 (Left) The interaction of a vertical end-to-end counter with the

westernmost block in each row. (Right) The cap assemblies

built to attach to the easternmost block in each row. . . . . . 128

xi



5.20 The decomposition of the bars of a vertically-oriented end-to-

end counter used to combine rows of blocks in a block counter. 129

5.21 A schematic of the proof that the block spanned by a minimal

row spanner is unique. Maintaining a stack while traversing

a path from the interior of the start ring to the exterior of the

end ring uniquely determines the block spanned by any minimal

block spanner containing the path. . . . . . . . . . . . . . . . 130

xii



1

Introduction

1.1 Tile assembly

The original abstract tile assembly model or aTAM was introduced by Erik

Winfree [Win98] in his Ph.D. thesis in the mid-1990s. In this model, a set of

square particles (called tiles) are mixed in a container (called a bin) and can

attach along edges with matching bonding sites or glues (each with an integer

strength) to form a multi-tile assembly. The design of a tile set consists of

specifying the glue on each of the four sides of each tile type. A mixing takes

place by combining an infinite number of copies of each tile type in a bin.

Once multi-tile assemblies have formed, they may attach to other assemblies

(of which tiles are a special case) to form ever-larger superassemblies. Two

subassemblies can attach to form a superassembly if there exists a translation

of the assemblies such that the matching glues on coincident edges of the two

assemblies have a total strength that exceeds the fixed temperature of the

For a complete exploration of the many models and results in tile assembly, see the
surveys of Doty [Dot12], Patitz [Pat12], and Woods [Woo13].

1



mixing. The set of assemblies assembled that are not subassemblies of some

other assembly are the products of the mixing. The specification of the tile set

and temperature defines an assembly system, and the behavior of the system

follows from these specifications. An example of an assembly system is seen

in Figure 1.1. The system pictured forms a unique 2× 2 square assembly, but

only one of many possible assembly processes is shown. For the most part,

only systems producing a unique assembly are considered.

Figure 1.1: A temperature-1 tile assembly system with three tile types and
two glues. Each color denotes a unique glue, and each glue forms a bond of
strength 1.

As it turns out, the formation of multi-tile subassemblies that form su-

perassemblies is a behavior not permitted by the original aTAM defined by

Winfree. In Winfree’s model, the tile system also has a special seed tile to

which tiles attach to form a growing seed assembly, and the seed assembly is the

only multi-tile assembly permitted to form (see Figure 1.2). Assembly in these

systems has a more restricted form of crystalline-like growth, and this restric-

tion (as we will describe) is both useful and limiting. The first work in seedless

growth was the Ph.D. work of Rebecca Schulman [BSRW09, Sch98, SW05],

who studied the theoretical and experimental problem of “spurious nucleation”

where multi-tile assemblies form without the seed tile. Her work was focused

on preventing growth not originating at the seed tile (or a preassembled seed

assembly) by designing tile sets where assemblies not containing the seed as-

sembly are kinetically unfavorable.

2



Figure 1.2: Top: a seeded (aTAM) temperature-1 tile assembly system that
grows from a seed tile (gray) to produce a 5-tile assembly. Bottom: the same
tile set without seeded growth produces a second, 4-tile assembly.

1.2 Two-handed assembly

After the study of kinetic seedless assembly was initiated by Schulman et

al., the study of seedless tile assembly in the kinetics-less setting (similar to

the aTAM) began. Various notions of seedless assembly restricted to lin-

ear assemblies [Adl00, ACG+01, CGR12] were studied first, and the “seed-

less aTAM”, referred to as the hierarchical aTAM [CD12, PLS12], polyomino

tile assembly model (pTAM) [Luh09, Luh10], or two-handed assembly model

(2HAM) [ABD+10, CDD+13, DDF+08a, DPR+10] have since been studied

more extensively. From now on we refer to this model as the 2HAM for con-

sistency with prior work most closely linked to our results.

The 2HAM and aTAM lie on opposite ends of the parameterized q-tile

model of Aggarwal et al. [ACG+05] in which assemblies of at most q (a fixed

integer) may form and attach to the seed assembly. The two-handed planar

geometric tile assembly model (2GAM) of Fu et al. [FPSS12] is a modification

of the 2HAM in which individual tiles are replaced by preassembled assemblies

3



called geometric tiles. Geometric tiles attach using the same rules, but utilize

their geometry and the constraint that they must meet and attach by planar

motion to achieve more efficient assembly.

Because the 2HAM permits seedless assembly behavior seemingly disal-

lowed in the aTAM, comparative study of the two models has been done to

better understand their relationship. Chen and Doty [CD12] considered as-

sembly time of the two models: the expected time spent for an assembly to

form, where the growth rate is proportional to the number of possible ways

two assemblies can attach. They achieved assembly of an infinite class of n×m

rectangles with n > m in time O(n4/5 log n) in the 2HAM, beating the Ω(n)

bound for aTAM systems.

Recently it was shown by Doty et al. [DLP+10, DLP+12] that the aTAM

at temperature 2 (where assemblies may need to bind using multiple glues at

once) is intrinsically universal. An intrinsically universal model has a single

tile set that, given an appropriate seed assembly, simulates any system in the

model. In the case of the aTAM, this implies that temperatures above 2 have

no fundamentally distinct behaviors. For the 2HAM, Demaine et al. [DPR+13]

showed that for each temperature τ ≥ 2, there is no system that is intrinsically

universal for the model at temperature τ + 1. That is, the 2HAM gains new

power and behavior as the temperature is increased, while the aTAM does

not. Cannon et al. [CDD+13] showed that any aTAM system at τ ≥ 2 can

be simulated by a 2HAM system at τ . Combining this knowledge with the

prior results, the 2HAM at τ ≥ 3 or more exhibit behaviors that cannot be

simulated by any aTAM system at any temperature.

Because tile systems are geometric in nature and the applications often

involve the construction of a specified structure rather than a “Yes” or “No”

answer, merely proving bounds on the computational power of various mod-

4



els is not sufficiently informative to understand how models relate. Recent

results, including those reviewed here, have demonstrated that the ability to

simulate more accurately captures the power of a model, a realization that

occurred earlier in the field of cellular automata [Oll08]. A recent survey by

Woods [Woo13] explores intrinsic universality and inter-model simulation re-

sults thoroughly, and includes a hierarchy diagram of all known tile assembly

models and their ability to simulate each other.

1.3 Staged self-assembly

One the challenging aspects of implementing tile assembly models with real

molecules is the engineering of glues (chemical bonding sites) that form suffi-

ciently strong bonds with matching glues, and sufficiently weak bonding with

non-matching glues. For k distinct glues,
(
k
2

)
= k(k − 1)/2 interactions be-

tween these glues must be considered and engineered. Also, since systems are

entirely specified by their tile sets, only a constant number of systems exist

for any fixed k and the complexity of the shapes assembled by these systems

also have constant, bounded complexity.

Various tile assembly models with other aspects that can encode arbitrary

amounts of information have been proposed, including control of concentra-

tions of each tile type [KS08, Dot10], adjustment of temperature during mix-

ing [KS06, Sum12], and tile shape [DDF+12]. The staged tile assembly model

introduced by Demaine et al. [DDF+08a, DDF+08b] uses a sequence of 2HAM

mixings to encode shape, where the product assemblies of the previous mixing

are used (in place of single tiles) as reagents of the next mixing. The graph de-

scribing the mixings can grow without bound, and is used to encode arbitrarily

complex assemblies using a constant number of glues.

5



For instance, Rothemund and Winfree [RW00] prove that all n×n squares

can be produced with an aTAM system of O(log n) tile types while Demaine

et al. [DDF+08a] show that assembly is possible by a staged assembly system

with a constant number of tiles and O(log n) mixings. For measuring the

size of an aTAM system, the number of tile types is used, whereas the size

of a staged assembly system is determined by the number of mixings. So

under these distinct measures of size, assembling an n × n square is possible

using systems of size O(log n) in both models. Since these measures roughly

correspond to the information content of aTAM and staged systems, a common

information-theoretic argument can be used to show that a lower bound of

Ω(log n/ log log n) exists for the size of any system assembling an n×n square.

1.4 Combinatorial optimization

Shortly after Rothemund and Winfree achieved O(log n) systems for n × n

squares, Adleman, Cheng, Goel, and Huang [ACGH01] found an optimal

family of O(log n/ log log n)-sized tile sets. With the case of squares com-

pletely solved, these four authors, along with Kempe, de Espanés, and Rothe-

mund [ACG+02] studied the general minimum tile set problem: find the small-

est temperature-2 tile set producing a unique assembly with a given input

shape. They showed that the minimum tile set problem is NP-complete, but

is solvable in polynomial-time for trees (shapes with no 2 × 2 subshape) and

squares. If the restriction of producing a unique assembly is relaxed to al-

low possibly multiple assemblies that share the input shape, then Bryans et

al. [BCD+11] showed that this problem is NPNP-complete, harder under stan-

dard complexity-theoretic assumptions. The additional complexity introduced

by allowing a system to produce multiple assemblies has kept most study in

6



tile assembly restricted to systems producing a unique assembly.

Note that finding the smallest tile set uniquely assembling an n×n assembly

follows trivially from the O(log n) upper bound on the solution tile set size, as

there are only a polynomial number of possible solution tile sets of this size.

This led to the study of a number of variants of the minimum tile set problem.

Chen, Doty, and Seki [CDS11] showed that the minimum tile set problem

extended to arbitrary temperatures remains polynomial-time solvable.

Ma and Lombardi [ML08] introduced the patterned self-assembly tile set

synthesis (PATS) problem in which the goal is to find a small tile set that

produces an n × m rectangular assembly in which each tile has an assigned

label or color. They also modifed the assembly process to start with an L-

shaped seed of n + m − 1 tiles forming the west and south boundary of the

shape, and require that all glues have strength 1 and the system has temper-

ature 2. These restrictions enforce that each tile bonds to the seed assembly

using both west and south edges. Despite being a heavily-constrained model

of tile assembly, the problem remains interesting and difficult. Czeizler and

Popa [CP12] were the first to make significant headway1, proving that the

problem is NP-complete if the number of distinct labels in the pattern is al-

lowed to grow unbounded with the pattern dimensions n and m. Seki [Sek13]

showed that the problem remains NP-complete if the number of labels is fixed

and at most 60, and Kari, Kopecki, and Seki [KKS13] have shown that if upper

limits are placed on the number of tile types with each label, then the problem

is NP-complete for patterns with only 3 labels.

1See the discussion in [CP12] for an account of the history of the PATS problem.

7



1.5 Our work

We study the smallest staged assembly system (SAS) problem: given a labeled

shape, find the smallest staged assembly system that produces this shape.

The problem lies at the center of several areas of interest: seedless and 2HAM

models, combinatorial optimization, assembly of labeled shapes, and alternate

methods of information encoding. We approach the smallest SAS problem by

drawing parallels between staged assembly systems and context-free grammars

(CFGs), a natural model of structured languages (sets of strings) developed by

Noam Chomsky [Cho56, Cho59]. Though understanding staged self-assembly

is the primary goal of this work, context-free grammars serve as a tool, a

reference, and an object of study.

In Chapter 2, we introduce context-free grammars and the smallest gram-

mar problem: given a string s, find the smallest CFG whose language is {s}.

As shown in Chapter 3, the smallest CFG problem is closely linked to the

smallest SAS problem. We briefly review the proof by Lehman et al. [Leh02]

that the smallest grammar problem is NP-hard, and extend this result to

well-known restricted classes of normal form context-free grammars.

In Chapter 3, we formally define staged assembly systems and give several

results on the smallest SAS problem restricted to one-dimensional assemblies of

labeled n×1 polyominoes. We first show that the smallest SAS problem is NP-

hard using a reduction reminiscent of the one used by Lehman et al. [Leh02]

for the smallest grammar problem. Then we compare smallest grammars and

SASs for strings, where the string is derived by the CFG and found on an

assembly produced by the SAS. We show that if the number of the glues on the

SAS is constant, then the smallest CFG and SAS for any string are equivalent

in size and structure. This result combined with prior work on the smallest

grammar problem yields additional results on approximation algorithms for

8



the smallest SAS problem. In the case that the number of glues is allowed

to grow with the size of the input assembly, we show that the equivalence no

longer holds and that the smallest SAS may by significantly smaller. Finally,

we examine whether a similar idea can be used to construct large unlabeled

assemblies with SASs more efficiently than with CFGs and show that the

answer is “No”.

Before extending the ideas of Chapter 3 to general two-dimensional shapes,

Chapter 4 is used to examine the state of context-free grammars in two di-

mensions. We review the existing generalizations of context-free grammars

from strings to polyominoes and show that each fails to maintain at least one

desirable property of context-free grammars used in the comparison of CFGs

and SASs. As a solution, we introduce a new generalization of CFGs called

polyomino context-free grammmars (PCFGs) that retains the necessary prop-

erties of CFGs, and we give a collection of results related to the smallest PCFG

problem.

In Chapter 5 we compare PCFGs and SASs in full two-dimensional glory.

We start by showing that the smallest SAS problem is in the polynomial hier-

archy, and explain why achieving an NP-completeness result appears difficult.

Next, we show that any PCFG deriving a shape can be converted into a slightly

larger SAS that assembles the same shape at a scale factor. In the other di-

rection, we show that smallest SASs and PCFGs may differ by a nearly linear

factor, even for squares with a constant number of labels and general shapes

with only one label. Taken together, these results prove that only a one-sided

equivalence between PCFGs and SASs is possible: a small PCFG implies a

small SAS, but not vice versa.

9



2

Context-Free Grammars

Context-free grammars were first developed by Noam Chomsky in the 1950s [Cho56,

Cho59] as a formal model of languages (sets of strings), intended to capture

some of the interesting structure of natural language. Context-free grammars

lie in the Chomsky hierarchy of formal language models, along with finite

automata, context-sensitive grammars, and Turing machines. The expressive

power of context-free grammars strikes a balance between the capability to de-

scribe interesting structure and the tractability of key problems on grammars

and their languages. Commonly studied problems for context-free grammars

include deciding whether a string belongs to a given language (parsing), list-

ing the set of strings in a language (enumeration), and deciding whether a

language is context-free.

In this chapter, we consider the smallest grammar problem: given a string

s, find the smallest context-free grammar whose language is {s}. Heuristic

algorithms for the smallest grammar problem have existed for several decades,

but the first breakthrough in understanding the complexity of the problem oc-

curred in the early 2000s with the Ph.D. thesis work of Eric Lehman [CLL+02,

CLL+05, Leh02, Las02] who showed, with his coauthors, that the problem

10



is NP-complete to approximate within some small constant factor of opti-

mal. They also created a polynomial-time algorithm that produces a grammar

within a O(log n)-factor of optimal, where n is the length of s. Curiously, two

other O(log n)-approximation algorithms were developed by Rytter [Ryt02]

and Sakamoto [Sak05] around the same time.1 The algorithms of Lehman et

al., Rytter, and Sakamoto use a common tool of the LZ77 decomposition of

the input string. LZ77 is an abbreviation of “Lempel-Ziv 1977” from the com-

pression algorithm of Ziv and Lempel [ZL77]. Recently, Jeż [Jeż13] has given a

new O(log n)-approximation using a simplified approach similar to Sakamoto

but without using the LZ77 decomposition.

In this work, we begin by defining context-free grammars and reviewing

the proof of Lehman et al. [CLL+05] that the smallest grammar problem is

NP-hard to approximate. Then we consider the smallest grammar problem

for seven commonly used context-free grammar normal forms. Normal form

grammars have extra restrictions on how the grammar is structured, often

making them easier to analyze. We show that the smallest grammar problem

restricted to these normal forms remains NP-hard to approximate within fac-

tors that are larger than the best known for unrestricted grammars achieved

by Lehman et al., even when using the same inapproximability results by

Berman and Karpinski [BK98] in the analysis. Such results are unexpected,

as the restricted grammars have a smaller search space, and thus appear to be

easier problems.

1See the discussion in Jeż [Jeż13] for concerns about the approximation factor of the
algorithm by Sakamoto [Sak05].

11



2.1 Definitions

A string s is a sequence of symbols a1a2 . . . an. We call the set of symbols in

s the alphabet of s, denoted Σ(s), with Σ(s) = {a1, a2, . . . , an}. The size of s

is n, the number of symbols in the sequence, and is denoted |s|. Similarly, the

size of the alphabet is denoted |Σ(s)|.

A context-free grammar, abbreviated CFG or simply grammar, is a 4-tuple

(Σ,Γ, S,∆). The set Σ is a set of terminal symbols and Γ is a set of non-

terminal symbols. The symbol S ∈ Γ is a special start symbol. Finally, the set

∆ consists of production rules, each of the form A→ B1B2 . . . Bj, with A ∈ Γ

and Bi ∈ Σ∪Γ. These rules form the building blocks of the derivation process

described next.

A string s can be derived by starting with S, the start symbol of G, and

repeatedly replacing a non-terminal symbol with a sequence of non-terminal

and terminal symbols. The set of valid replacements is ∆, the production

rules of G, where a non-terminal symbol A can be replaced with a sequence of

symbols B1B2 . . . Bj if there exists a rule A→ B1B2 . . . Bj in ∆.

The set of all strings that can be derived using a grammar G is called the

language of G, denoted L(G). A language is singleton if it contains a single

string, and a grammar is singleton if its language is singleton.

For some grammars it is the case that a non-terminal symbol N1 ∈ Γ

appears on the left-hand side (l.h.s.) of multiple production rules in ∆. In

other words, two rules A → B1B2 . . . Bj and A → C1C2 . . . Ck are found in

∆. If a grammar G is not singleton then two such rules must exist, as the

derivation process starting with S must be non-deterministic to yield multiple

strings. However, a non-deterministic grammar may still be singleton as seen

by the grammar G = ({a}, {S,A,B}, S, {S → A, S → B,A → a,B → a}).

On the other hand, every deterministic grammar is singleton, as the derivation

12



process always carries out the same set of replacements.

This chapter considers representing strings and other sequences as gram-

mars. Given a string s, any grammar G with L(G) = {s} is a representation

of s as a grammar, including (Σ(s), {S}, S, {S → s}). We define the size of a

grammar |G| as the total number of right-hand side (r.h.s.) symbols appear-

ing in all production rules, including repetition. Clearly |G| ≥ |Σ|, |G| ≥ |Γ|,

and |G| ≥ |∆|, so |G| is a good approximation of the “bigness” of the entire

grammar.

2.2 The smallest grammar problem

In Chapter 3 we show the equivalence between an optimization problem in self-

assembly and finding the smallest grammar whose language is a given string,

the well-studied smallest grammar problem:

Problem 2.2.1 (Smallest CFG). Given a string s, find the smallest CFG G

such that L(G) = {s}.

For optimization problems, including the smallest grammar problem, ap-

proximation algorithms are often developed. We define an algorithm to be

a c-approximation if it always returns a solution with size at most c · OPT

(for minimization problems) or at least c ·OPT (for maximization problems),

where OPT is the size of the optimal solution. Alternatively, a problem is

c-approximable if it admits a c-approximation. A problem is said to be c-

inapproximable if a c-approximation exists only if P = NP. The shorthand

(c− ε)-inapproximable is used to indicate that the problem is inapproximable

for any value less than c, i.e. for all ε > 0.

Eric Lehman and coauthors [CLL+05] showed that the smallest grammar

problem is NP-complete and 8579/8578-inapproximable. Here we review this

13



proof, and in Sections 2.3 through 2.6 use similar reductions to show that the

smallest grammar problem remains inapproximable when the grammars are

restricted to belong to one of several normal forms. We start with an easy

proof showing that the smallest grammar problem is in NP:

Lemma 2.2.2. The smallest grammar problem is in NP.

Proof. Every string s admits a grammar of size |s|: the grammar (Σ(s), {S}, S, {S →

s}) has language {s} and a single rule with n r.h.s. symbols. The smallest

grammar for s is also deterministic, as any non-deterministic grammar with

language {s} and production rules A → B1B2 . . . Bj and A → C1C2 . . . Ck

yields a smaller grammar with language {s} by removing the second rule.

Trivially, the smallest grammar for s contains no rules of the form A→ ε.

Combining these three facts yields a polynomial-time verifier for an input

s, k, and G. First, check that |G| ≤ k, G is deterministic, and G has no

rules of the form A→ ε, otherwise reject. Second, perform the (deterministic)

derivation of the single string in L(G). If the derivation process ever yields

a sequence of terminals and non-terminals of length more than |s|, reject.

Otherwise, check that the string is s and accept if so, otherwise reject.

The proof of NP-hardness is, as usual, more difficult. Lehman et al. use

a reduction from the minimum vertex cover problem on degree-three graphs,

shown to be inapproximable within better than a 145/144-factor by Berman

and Karpinski:

Problem 2.2.3 (Degree-k vertex cover). Given a degree-k graph G = (V,E)

find the smallest set of vertices C ⊆ V such that for every edge (u, v) ∈ E,

{u, v} ∩ C 6= ∅.

Lemma 2.2.4. The degree-3 vertex cover problem is (145/144−ε)-inapproximable [BK98].

14



The reduction encodes the edges of the input graph as a sequence of

constant-length substrings. Ample use of unique terminal symbols and re-

peated substrings are used to rigidly fix the structure of any smallest gram-

mar to consist of three levels: the root node labeled S, a set of non-terminals

corresponding to vertices in the cover, and a sequence of terminal symbols

equal to the input. A grammar encoding a vertex cover of size k for the input

string generated from a graph G = (V,E) has size 15|V | + 3|E| + k. Since

the graph is degree-three, 3/2|V | ≥ |E| and k ≥ |E|/3. These facts yield a

c-inapproximability result for the smallest grammar problem:

c =
15|V |+ 3|E|+ 145/144k

15|V |+ 3|E|+ k

≥ 15|V |+ 3(3/2|V |) + 145/144(1/3|V |)
15|V |+ 3(3/2|V |) + 1/3|V |

≥ 8569

8568

Theorem 2.2.5. The smallest grammar problem is (8569/8568−ε)-inapproximable. [CLL+05]

Next, we give a slight improvement to this result by replacing the inap-

proximability result of Berman and Karpinski on the degree-3 vertex cover

problem with a similar result on the degree-4 vertex cover problem.

Lemma 2.2.6. The degree-4 vertex cover problem is (79/78−ε)-inapproximable [BK98].

Then we proceed with the same reduction and analysis as before, but with

2|V | ≥ |E| and k ≥ |E|/4:

15



c =
15|V |+ 3|E|+ 79/78k

15|V |+ 3|E|+ k

≥ 15|V |+ 3(2|V |) + 79/78(1/4|V |)
15|V |+ 3(2|V |) + 1/4|V |

≥ 6631

6630

Theorem 2.2.7. The smallest grammar problem is (6631/6630−ε)-inapproximable.

Surprisingly, this improvement does not appear to be previously known.

The reduction

Let the symbol # denote a unique symbol at every use, and let
∏

denote con-

catenation. Then given a degree-three graph G = (V,E), the string computed

by the reduction is:

s =
∏
vi∈V

(0vi#vi0#)2
∏
vi∈V

(0vi0#)
∏

(vi,vj)∈E

(0vi0vj0#)

Consider decomposition the string into three parts, so s = s1s2s3:

s1 =
∏
vi∈V

(0vi#vi0#) s2 =
∏
vi∈V

(0vi0#) s3 =
∏

(vi,vj)∈E

(0vi0vj0#)

Some smallest grammar for s has rules Li → 0vi and Ri → vi0 for each

vi (appearing in s1). Such a grammar also has a rule Bi → Li0 or Bj → Lj0

for each string 0vi0vj0 in s3. As a result, every edge incident to vi (appearing

as a string in s3) can then be encoded as a rule Ei → BiRj or Ei → LiBj.

A smallest grammar then selects the fewest vertices vi ∈ V to have rules

16



Bi → Li0, equivalent to selecting the smallest set of vertices for a vertex

cover.

Recall that the size of a grammar is the total number of symbols on the

right-hand sides of all rules. Then converting a rule A → bcd into a pair of

rules A→ Ed, E → bc increases the size of the grammar by 1, so starting with

a single rule S → s, additional rules result in a smaller grammar only if the

rules derive substrings that repeat. Because a unique # symbol appears at

least once in every substring of s with length 5 or greater, no strings of length

greater than 5 repeat. As a result, every smallest grammar consists of a large

start rule and a collection of short rules Li → 0vi, Ri → vi0, Bi → Li0, and

Ei → BiRi or LiBi.

2.3 Grammar normal forms

Grammar normal forms are restricted classes of context-free grammars that

obey constraints on the form of production rules, but remain capable of encod-

ing any language encoded by a general context-free grammar. Normal forms

have found a variety of applications, primarily in simplifying algorithms in-

volving context-free grammars. For instance, the problem of deciding whether

an input string belongs to the language of an input grammar, also known as

parsing, is a critical step of compiling computer programs.

The popular CYK algorithm [CS70, You67, Kas65] for parsing requires

that the input grammar be given in Chomsky normal form, where the r.h.s. of

each production rule is either two non-terminal symbols, or a single terminal

symbol. Only recently Lange and Leiß [LL09] were able to show that a simple

modification to the CYK algorithm enables its use on unrestricted grammars

without an asymptotic performance penalty.

17



Name Rule format in [LL09] Minimal rule format Inapproximability
CNF− A→ BC | a

A→ BC | a 3667/3666− εCNF A→ BC | a, S → ε
CNFε A→ BC | a | ε
C2F A→ BC | B | a, S → ε
S2F A→ α where |α| = 2

A→ α where |α| = 2 3353/3352
2NF A→ α where |α| ≤ 2
2LF A→ uBvCw | uBv | u A→ uBvCw | u 8191/8190− ε

Table 2.1: Common grammar normal forms and their inapproximability ratios
proved in Section 2.3. The minimal rule format contains all rule formats
possibly found in some smallest grammar, where symbols A,B,C are non-
terminals, S is the start symbol, a is a terminal symbol, α is a string of
terminals and non-terminals, and u, v, w are strings of terminals.

In this section we consider the smallest grammar problem for seven normal

forms, seen in Table 2.1 (partially reproduced from [LL09]). If only smallest

grammars for singleton languages of positive-length strings are considered, the

seven normal forms reduce to three classes normal forms. We consider three

canonical normal forms, one from each class: CNF− (Chomsky normal form

with no empty string), 2NF (2-normal form), and 2LF (bilinear form). For

each canonical normal form, and thus all seven normal forms, we prove that

finding the smallest grammar in the form is NP-complete and inapproximable

within some small constant factor.

It is clear that for any given string, the smallest normal form grammar

is at least the size of the smallest unrestricted grammar. However, this does

not imply that the smallest grammar problem for normal forms is NP-hard.

Consider the smallest grammar for reduction string s under the restriction

that every rule has at most two right-hand-side symbols. In this case, a rule

Bi → Li0 must be created for every vi ∈ V , so every vertex is in the cover “for

free” and the reduction fails.

18



2.4 Chomsky normal form (CNF)

Given a graph G = (V,E), create the string s = s1s2, with:

s1 =
∏
vi∈V

(0vivi0) s2 =
∏

(vi,vj)∈E

(0vi0vj0#)

Consider the various ways in which each substring 0vivi0 can be derived.

Using a single global rule P → 00 enables the use of a minimal 2-rule derivation

Vi → PBi, Bi → vivi for each vi, as vivi appears nowhere else in s. On the

other hand, the 3-rule encoding Vi → LiRi, Li → 0vi, Ri → vi0 is also possible,

and contains rules Li and Ri reusable in s2.

Now consider rules for s2. Some smallest grammar must produce a non-

terminal Bi deriving 0vi0 or 0vj0 for each substring 0vi0vj0, i.e. must select

a cover vertex vi or vj. Moreover, if rules Li → 0vi and Ri → vi0 were not

created to derive a substring 0vivi0 in s1, they must be created for a substring

0vi0vj0 of s2. So some smallest grammar creates them for all vertices vi.

So some smallest grammar uses a rule set Ef
i → Ei#, and Ei → BiRj or

Ei → LiBj for each substring 0vi0vj0.

In total, deriving s1 uses 3|V |+ |V | − 1 rules, s2 uses 2|E|+ |E| − 1 rules,

and both use k additional Bi rules, where k is the smallest vertex cover for G.

An additional set of |V |+ |E|+ 1 rules of the form A→ a are needed for the

symbols found in s and a start rule deriving the two non-terminals for s1 and

s2. Pushing these values through the analysis in [CLL+05], the smallest CNF

grammar problem is not approximable within better than a c factor:

19



c =
2(4|V | − 1 + 3|E| − 1 + 79/78k) + |V |+ |E|+ 2

2(4|V | − 1 + 3|E| − 1 + k) + |V |+ |E|+ 2

≥ 9|V |+ 7|E| − 2 + 158/78k

9|V |+ 7|E| − 2 + 2k

≥ 9|V |+ 7(2|V |)− 2 + 158/78(1/4|V |))
9|V |+ 7(2|V |)− 2 + 2(1/4|V |)

≥ 3667

3666

Theorem 2.4.1. The smallest CNF grammar problem is (3667/3666 − ε)-

inapproximable.

2.5 2-normal form (2NF)

Rather than do a reduction from scratch, we prove a small set of results that

tightly link the smallest CNF and smallest 2NF grammar problems.

Lemma 2.5.1. For any string s there exists a 2NF grammar G deriving s if

and only if there exists a CNF grammar G′ deriving s with |G|+ |Σ(s)| = |G′|.

Proof. First, start with a CNF grammar G′ and create a 2NF grammar G

deriving s by eliminating rules of the form A→ a by replacing every occurrence

of A with a. The new grammar has two r.h.s. symbols in every rule (which may

be terminal or non-terminal) and so is a 2NF grammar with size |G′| − |Σ(s)|.

Second, start with a 2NF grammar G and add a set of rules Ai → ai for

each ai ∈ Σ(s). For each occurrence of any ai on the r.h.s. of a rule, replace ai

with Ai. This new grammar is a CNF grammar and has size |G|+ Σ(s).

Note that this lemma immediately implies that the smallest 2NF grammar

problem is NP-hard.

20



Lemma 2.5.2. Let 0 < d ≤ 1 and Σ(s) be the set of symbols in s. If the

smallest CNF grammar problem is (1 + c′)-inapproximable for an infinite set

of strings si such that |Σ(si)| ≥ d|si| for all si, then the smallest 2NF grammar

problem is (1 + c′ + c′d/2)-inapproximable.

Proof. For a given input string si, call the smallest 2NF grammar G and

smallest CNF grammar G′, with |G| + |Σ(si)| = |G′|. Then computing a

CNF− grammar of size at most c|G′| = c|G| + c|Σ(si)| for all si is NP -hard.

So by Lemma 2.5.1, computing a S2F grammar of size at most c|G|+c|Σ(si)|−

|Σ(si)| = c|G| + (c − 1)|Σ(si)| is NP -hard. By assumption, |Σ(si)| ≥ d|si|.

Moreover, |si| ≥ |G|/2 and thus |Σ(si)| ≥ d|G|/2. So computing a 2NF

grammar of size at most c|G|+(c−1)|Σ(si)| ≥ c|G|+(c−1)d|G|/2 is NP -hard.

Letting c = (1 + c′), the smallest 2NF grammar problem is (1 + c′ + c′d/2)-

inapproximable.

Theorem 2.5.3. The smallest 2NF grammar problem is (3353/3352)-inapproximable.

Proof. For each string s used in Section 2.4, |Σ(s)| = |V | + |E| + 1 and |s| =

4|V | + 6|E|. So |Σ(s)|/(|s|) = (|V | + |E| + 1)/(4|V | + 6|E|) ≥ (|V | + 2|V | +

1)/(4|V | + 6(2|V |)) ≥ 3/16. Invoking Lemma 2.5.2 with c′ = 1
3666

and d = 3
16

yields an inapproximability ratio of 1 + 1/3666 + 1/3666 · 3/16 · 1/2 − ε >

3353/3352 for the smallest 2NF grammar problem.

2.6 Bilinear form (2LF)

This normal form shares properties of both 2NF (only two non-terminals are

allowed per right-hand side) and general CFGs (an arbitrary number of ter-

minal symbols are allowed per right-hand side). Here we use a string s with

many duplicated substrings, effectively forcing each such substring to be de-

rived from a distinct non-terminal symbol. Consider s = s1s2s3, with:

21



s1 =
∏
vi∈V

(0vivivi0vi)
2 s2 =

∏
vi∈V

(0vi0ci)
2 s3 =

∏
(vi,vj)∈E

(0vi0vj0eij)
2

Each substring (0vivivi0vi)
2 has identical halves that should reuse an iden-

tical set of rules. By a similar argument to that used in previous reductions,

a set of rules Li → 0vi, Ri → vi0, V h
i → LiviRivi, Vi → V h

i V
h
i are found

in some smallest 2LF grammar for s. Similarly, each substring (0vi0vj0eij)
2

should have both occurrences of its duplicated half (0vi0vj0eij) derived using

a common non-terminal symbol, and the entire string derived with a unique

non-terminal symbol. Deriving each half costs 3 (e.g. Eh
i → BiRjeij) or 4

r.h.s. symbols (e.g. Eh
i → LiLj0eij).

Finally, each substring (0vi0ci)
2 also has two duplicate halves that should

be derived identically. Each half of the substring can be encoded using 5

(Ch
i → Li0ci and Ci → Ch

i C
h
i ) or 6 r.h.s. symbols (Ch

i → Bici and Bi → Li0).

Because the symbol-cost for using Bi (one) is equal to the symbol-cost of failing

to have either vertex covering a particular edge (i.e. not using Bi or Bj in

deriving a particular substring 0vi0vj0eij), some smallest grammar corresponds

to a vertex cover. So there is a smallest grammar with the following production

rules:

1. For each (0vivivi0vi)
2 in s1: Li → 0vi, Ri → vi0, V h

i → LiviRivi, Vi →

V h
i V

h
i .

2. For each (0vi0ci)
2 in s2: Ci → BiciBici, Bi → Li0 if vi in cover, Ci →

Ch
i C

h
i , Ch

i → Li0ci otherwise.

3. For each (0vi0vj0eij)
2 in s3: Ei → Eh

i E
h
i with Eh

i → BiRjeij or Eh
i →

LjBjeij.

22



Moreover, deriving the sequence of Vi, Ci, and Ei symbols requires an

additional 2|V |+ |E|− 2 r.h.s. symbols in a set of branching production rules.

So if there is a 2LF grammar of size (10|V |+5|V |+k+5|E|)+(2|V |+ |E|−2)

with singleton language {s} then there is a vertex cover of size k. So the

smallest 2LF grammar problem is inapproximable within better than a c factor:

c =
17|V |+ 6|E|+ 79/78k − 2

17|V |+ 6|E|+ k − 2

≥ 17|V |+ 6(2|V |) + 79/78(1/4|V |)− 2

17|V |+ 6(2|V |) + (1/4|V |)− 2

≥ 26|V |+ 79/78(1/4|V |)
26|V |+ 1/4|V |

≥ 8191

8190

Theorem 2.6.1. The smallest 2LF grammar problem is (8191/8190 − ε)-

inapproximable.

2.7 APX-hardness of the smallest grammar

problem

The complexity class APX consists of the set of optimization problems that

admit constant-factor approximation algorithms. A subset of these problems

form the class PTAS of problems that admit polynomial-time approximation

schemes : an infinite sequence of approximation algorithms with arbitrarily-

good approximation ratios. A problem is APX-hard if a polynomial-time

approximation scheme for the problem implies such schemes for all problems

in APX.

Sakamoto et al. [SKS04] and Maruyama et al. [MMS06] cite Lehman and

23



shelat [Las02] as showing the smallest grammar problem to be APX-hard.

Lehman and shelat do not explicitly mention the APX-hardness result in their

work, nor does Lehman explicitly mention such a result in his thesis [Leh02]

or his other coauthored papers containing the result [CLL+02, CLL+05].

24



3

One-Dimensional Staged

Self-Assembly

In Chapter 2 we reviewed work on context-free grammars (CFGs), a model

of formal languages, and in particular the smallest grammar problem, finding

the smallest context-free grammar whose language is a single given string.

With context-free grammars in mind, we are able to begin the analysis of

staged assembly systems, abbreviated SASs, and in particular the smallest

SAS problem.

A theme in Chapters 3 and 5 is examining the correspondence between

CFGs and SASs, and the smallest CFG and smallest SAS problems. At first,

it may be unclear how these two models may be compared, as SASs manipulate

and describe assemblies, not strings. However, extending the staged assembly

model to use systems of labeled tiles, as done in the aTAM and reviewed in

Section 1.4, yields a model in which assemblies are arrangements of labeled

tiles and can be described by the arrangements of labels. In the special case of

Portions of this chapter have been published as [DEIW11] and [DEIW12] with coauthors
Erik Demaine, Sarah Eisenstat, and Mashhood Ishaque.

25



one-dimensional assemblies consisting of a single row of tiles, the labels form

a string.

Since purity is of importance in laboratory synthesis of compounds, we

define the set of assemblies produced by a SAS to be those assemblies appearing

as the lone product of some mixing in the system. Extracting the label string

of these assemblies yields the “language” of the SAS. In practice, label strings

may correspond to particle functionalities or other properties, and an assembly

of a given label string may carry out a diverse set of behaviors or complex

pipeline of interactions.

Beyond the simple correspondence of labeled one-dimensional assemblies

and strings, context-free grammars are chosen for their hierarchical deriva-

tion of larger strings by composing smaller strings, akin to mixing smaller

assemblies to produce larger assemblies. The direct correspondence of CFG

production rules and SAS mixings is explored in Sections 3.3 and 3.4, and is

shown to be surprisingly intricate. In Sections 3.3 we show that CFGs with

language {s} and SASs producing an assembly with label string s are equiva-

lent up to some constant factor in size, under the assumption that each mixing

of the SAS produces a single assembly (which we call singleton staged assembly

systems (SSASs). This result justifies the comparison of CFGs and SASs, and

yields a number of corollaries about the smallest SAS problem by applying

known results from prior work on the smallest CFG problem. These include a

O(log n)-approximation algorithm for the smallest SSAS problem, and strong

evidence that the problem is o(log n/ log log n)-inapproximable.

After this result, we compare CFGs and SASs with multi-product mixings

(Section 3.4) and show that for some strings, the smallest CFG is significantly

larger than the smallest SAS. We show that the ratio of the smallest CFG

over the smallest SAS, which we call separation, can be Ω(
√
n/ log n). On

26



the other hand, if the number of glues k used in the system is parameterized,

then the separation is Ω(k) and O(k2). Since the number of glues is small and

constant in practice1, this implies that the results achieved for SSASs apply

to practical systems as well.

Finally, in Section 3.5 we answer a question posed by Robert Schweller [Sch13]

about whether additional glues can be used to assemble larger assemblies more

quickly, and give a nearly complete negative answer. This negative result,

when combined with the separation results of Section 3.4, shows that addi-

tional glues are only useful for efficient production of assemblies with complex

label strings, and do not enable for efficient assembly in general.

3.1 Definitions

An instance of the staged tile assembly model is called a staged assembly system

or system, abbreviated SAS. A SAS S = (T,G, τ,M,B) is specified by five

parts: a tile set T of square tiles, a glue function G : Σ(G)2 → {0, 1, . . . , τ}, a

temperature τ ∈ N, a directed acyclic mix graph M = (V,E), and a start bin

function B : VL → T from the root vertices VL ⊆ V of M with no incoming

edges.

Each tile t ∈ T is specified by a 5-tuple (l, gn, ge, gs, gw) consisting of a label

l taken from an alphabet Σ(T ) (denoted l(t)) and a set of four non-negative

integers in Σ(G) = {0, 1, . . . , k} specifying the glues on the sides of t with

normal vectors 〈0, 1〉 (north), 〈1, 0〉 (east), 〈0,−1〉 (south), and 〈−1, 0〉 (west),

respectively, denoted g~u(t). In this work we only consider glue functions with

the constraints that if G(gi, gj) > 0 then gi = gj, and G(0, 0) = 0. A configura-

tion is a partial function C : Z2 → T mapping locations on the integer lattice

to tiles. Any two locations p1 = (x1, y1), p2 = (x2, y2) in the domain of C (de-

1This is one of the motivations for the staged self-assembly model.

27



noted dom(C)) are adjacent if ||p2 − p1|| = 1 and the bond strength between

any pair of adjacent tiles C(p1) and C(p2) isG(gp2−p1(C(p1)), gp1−p2(C(p2))). A

configuration is a τ -stable assembly or an assembly at temperature τ if dom(C)

is connected on the lattice and, for any partition of dom(C) into two subcon-

figurations C1, C2, the sum of the bond strengths between tiles at pairs of

locations p1 ∈ dom(C1), p2 ∈ dom(C2) is at least τ . Any pair of configu-

rations C1, C2 are equivalent if there exists a vector ~v = 〈x, y〉 such that

dom(C1) = {p+ ~v | p ∈ dom(C2)} and C1(p) = C2(p+ ~v) for all p ∈ dom(C1).

The size of an assembly A is |dom(A)|, the the number of lattice locations

that map to tiles in T .

Two τ -stable assemblies A1, A2 are said to assemble into a superassembly

A3 if there exists a translation vector ~v = 〈x, y〉 such that dom(A1) ∩ {p+ ~v |

p ∈ A2} = ∅ and A3 defined by the partial functions A1 and A′2 with A′2(p) =

A2(p+~v) is a τ -stable assembly. Similarly, an assembly A1 is a subassembly of

A2, denoted A1 ⊆ A2, if there exists a translation vector ~v = 〈x, y〉 such that

dom(A1) ⊆ {p+ ~v | p ∈ A2}.

Each vertex of the mix graph M describes a two-handed assembly process.

This process starts with a set of τ -stable reagent assemblies or reagents I. The

set of assemblable assemblies Q is defined recursively as I ⊆ Q, and for any

pair of assemblies A1, A2 ∈ Q with superassembly A3, A3 ∈ Q. Finally, the

set of product assemblies or products P ⊆ Q is the set of assemblies A such

that for any assembly A′, no superassembly of A and A′ is in Q.

The mix graph M = (V,E) of S defines a set of two-handed assembly

processes (called mixings) for the non-root vertices of M (called bins). The

reagents of the bin v is the union of all products of mixings at vertices v′

with (v′, v) ∈ E. The start bin function B defines the lone single-tile product

of each mixing at a root bin. The system S is said to produce an assembly

28



a b c

a

b

a

b

c

c

cba

Figure 3.1: A τ = 1 self-assembly system (SAS) defined by its mix graph and
tile set (left), and the products of the system (right). Tile sides lacking a glue
denote the presence of glue 0, which does not form positive-strength bonds.

A if some mixing of S has a single product, A. We define the size of S or

alternatively, the amount of work done by S, to be |E| and denote it by |S|.

If every mixing in S has a single product, then S is a singleton self-assembly

system (SSAS).

1D notation In Chapter 5 we consider general staged assembly systems

producing assemblies on the integer lattice. However, in this chapter we only

consider one-dimensional staged self-assembly: assemblies limited to a single

horizontal row of tiles (see Figure 3.2).

Because these assemblies never attach vertically, their north and south

glues can all be replaced with the null glue with no change in the assem-

blies produced. As 5-tuples, tiles in one-dimensional systems have the form

(l, 0, 0, ge, gw). In the remainder of the chapter we use the in-line shorthand

gw[l]ge to represent such a tile and denote multi-tile assemblies as gw[l1l2 . . . ln]ge,

where l1, l2, . . . , ln is the sequence of tile labels as they appear from west to

east in the assembly. We call this sequence the label string of the assembly.

Because distinct assemblies can have identical west/glue pair and label string,

we are careful to avoid using this information to define assemblies and limit

29



its use to describing assemblies.

a b c

b c

b c a

b c a c

a b c

Figure 3.2: A one-dimensional τ = 1 self-assembly system in which only east
and west glues are non-null.

3.2 The Smallest SAS Problem

As with the smallest grammar problem for CFGs, the smallest SAS problem

is an essential optimization problem for staged assembly systems, and is a

primary problem of study in this work.

Problem 3.2.1 (Smallest SAS). Given an input string s, find the smallest

SAS with at most k glues that produces an assembly with label string s.

Before giving the NP-completeness proof, we prove some helpful results

about SASs.

Lemma 3.2.2. If a SAS mixing v has no infinite products, then each product

of v contains at most one copy of each reagent.

Proof. Let A be a product with two copies of a common subassembly g1[s1]g2.

ThenA has a sequence of subassemblies g1[s1]g2, g2[s2]g1, g1[s1]g2 and g1[s1s2]g1

is an assemblable assembly of the mixing. So g1[s1s2s1s2 . . . s1s2]g1, an infinite

assembly, is a product of the mixing.

30



Corollary 3.2.3. Let S be a smallest SAS with a bin v with two products

A1 = g1[s1]g2 and A2 = g3[s2]g4. Then either g1 6= g3 or g2 6= g4.

Lemma 3.2.4. Let S be a smallest SAS using k glues. Then each bin in S

has at most bk/2c · dk/2e products.

Proof. Each glue appears exclusively on east or west sides of products, other-

wise two products can combine. Without loss of generality, let the first i ≤ k

glues appear on the east side of products, and the remainder of the glues ap-

pear on the west side of products. By Corollary 3.2.3, each glue pair is found

on at most one product. So the number of products is i · (k − i) and is maxi-

mized when i and k− i are as close as possible and integer. This occurs when

i = bk/2c and thus k − i = dk/2e.

Lemma 3.2.5. Let S be a smallest SAS for an assembly A. Then every

product of every bin in S is a subassembly of A and S has a single leaf bin

with product set {A}.

Proof. By contradiction, assume S has a bin v with product A′ not a sub-

assembly of A. Then some product of every descendant of v must contain A′,

since A′ is either a product or was combined with other assemblies to form

a product. So any single-product descendant of v cannot produce A, as its

product contains A′. Thus, removing v and its descendants results in a sec-

ond SAS S ′ that also produces A, with |S ′| < |S|, a contradiction. So every

product of every bin is a subassembly of A.

Next, assume S has a leaf bin with a product set other than {A} or two

or more leaf bins with product sets {A}. Removing one of the leaf bins while

keeping a leaf bin with product set {A} yields a second SAS that is smaller

and produces A, a contradiction. So S must have exactly one leaf bin, and

this bin has product set {A}.

31



Lemma 3.2.6. Let S be a smallest SAS with k = 3 glues. Then S is a SSAS

and each non-root bin has two parent bins.

Proof. Suppose, by contradiction, that S has a bin v with multiple products

A1 = g1[s1]g2 and A2 = g3[s2]g4. Without loss of generality and by Corol-

lary 3.2.3 and the pigeonhole principle, A1 = 1[s1]2 and A2 = 1[s2]3.We will

show that A1 and A2 are products of all descendant bins of v (including the

single leaf bin guaranteed by Lemma 3.2.5) and so S is not a smallest SAS.

First, suppose A1 and A2 are reagents of some mixing and one attaches to

some other assembly A3 = g5[s3]g6 in the mixing. If A3 attaches to the west

side of either assembly, then g6 = 1 and g5 ∈ {2, 3}. Otherwise, if A3 attaches

to the east side of A1, then g5 = g2 and g6 ∈ {1, 3}. So in either case, A3

forms an infinite assembly and by Lemma 3.2.5 S is not a smallest SAS. So

any mixing with A1 and A2 as reagents has A1 and A2 as products. Then by

induction, all descendant bins of v has A1 and A2 as products and S is not

smallest, a contradiction. So S has no mixing with multiple products and is a

SSAS.

Suppose, by contradiction, that S has a non-root bin v with some number

of parent bins other than two. If v has one parent bin, then the product of

this parent bin is the product of v, and S is not smallest by Lemma 3.2.5. If

v has three or more parent bins, then the product of v has four glues (east,

west, and two interior locations where the three reagents attached) and one

repeating glue, so the product is infinite and S is not smallest by Lemma 3.2.5.

So every non-root bin must have exactly two parents.

Now we show that finding the smallest SAS is NP-complete. Unlike the

smallest grammar problem, containment of the smallest SAS problem in NP is

not trivial: the number of products of each mixing in a non-deterministically

chosen SAS could be exponential. Proving that this is not the case, then

32



efficiently computing the product sets are the two main steps of the proof.

Lemma 3.2.7. The smallest SAS problem is in NP.

Proof. For an input label string s, glue count k, and integer SAS size n, non-

deterministically select a SAS S = (T,G, τ,M,B) with |Σ(G)| < k, |S| ≤

min(|s|, n), and a single leaf bin, along with an assembly A with label string s.

Next, “fill in” the products for each bin in S, starting at the roots. During this

process, a bin may be encountered with a product that is not a subassembly of

A. Then by Lemma 3.2.5, S is not a smallest SAS and the machine rejects. So

going forward, we may assume that S has no such bins, an each bin contains

a polynomial number (O(|s|(|s| − 1)/2)) of products, each with polynomial

(O(|s|)) size.

To compute the set of products of a bin, produce the following graph:

create a vertex vi for each reagent Ai and a directed edge (vi, vj) for each

pair of reagents Ai, Aj such that the east glue of Ai matches the west glue of

Aj. Products are then maximal paths in this graph, starting at vertices with

in-degree 0 and ending at vertices with out-degree 0. The set of all such paths

can be enumerated by iterative depth-first search starting at each vertex with

in-degree 0. Any cycle found in a graph implies that an infinite assembly is

formed and that S is not a smallest SAS.

Putting it together, polynomial time is spent on each of a polynomial

number of bins to compute the products of the bin. The bins are processed in

topological order, starting at the roots. After computing the products of all

bins, the single leaf bin’s product set is compared to {A}. If they are equal,

accept, otherwise reject.

Next, we show that the smallest SAS problem is NP-hard, matching the

complexity of the smallest CFG problem. We reduce from the k-coloring

33



problem, a classic NP-hard problem:

Problem 3.2.8 (k-coloring). Given a graph G = (V,E) and a positive integer

k, can the vertices of G be colored such for any two vertices u, v ∈ V with the

same color, (u, v) 6∈ E?

Karp [Kar72] showed that this problem is NP-hard if k is allowed to grow

unbounded. Later, Garey and Johnson [GJ79] showed that the problem re-

mains NP-hard if k is fixed and k ≥ 3.

Lemma 3.2.9. The 3-coloring problem is NP-hard. [GJ79]

We use an approach reminiscent the NP-hardness proofs in Chapter 2,

reducing from a graph problem (in this case k-coloring) by encoding each

vertex and edge constraints as a short substring. The label string consists of

distinct symbols, with the exception of a pair of substrings lil
′
i and rir

′
i for

each vertex vi, which appear in multiple constraint substrings. The vertex

colors are encoded as a glue assignment of the east glues of the assemblies

with label strings lil
′
i and the west glues of the assemblies with label strings

rir
′
i. One assembly for each lil

′
i and rir

′
i substring is possible if and only if

a valid 3-coloring is possible, where each vertex has the same color across all

incident edges and all pairs of adjacent vertices have different colors.

Lemma 3.2.10. The smallest SAS problem is NP-hard.

Proof. Let G = (V,E) be an input graph to the 3-coloring problem. We set

k = 3 (the number of glues permitted in the SAS) and convert G to an input

label string s = s1s2:

s1 =
∏
vi∈V

#2lil
′
irir

′
i#

2# s2 =
∏

(vi,vj)∈E

#2lil
′
i#rjr

′
j#

2#

34



By Lemma 3.2.6, any smallest SAS for s is a SSAS since k = 3. All

symbols in s are unique, save for the repeating lil
′
i and rir

′
i substrings. So

any subassembly appears only once in the final product assembly except for

subassemblies with label substrings li, l
′
i, ri, r

′
i, lil

′
i, or rir

′
i for some i.

Suppose that a bin v has two child bins v1 and v2. Let d be the first

common descendant bin of v1 and v2 in the mix graph. If the product of v

has a label string not repeated in s, then any two parents of d must have the

same product: the product of d. So the SSAS must not be smallest. So any

bin with two or more child bins must have a product with a repeating label

substring.

Consider creating a solution SSAS using only a single subassembly for each

label string lil
′
i and rir

′
i. Because this assembly is used to produce an assembly

with label string containing s1, the east glue of [lil
′
i] and the west glue of [rir

′
i]

must be the same. Similarly, since these assemblies are used to produce an

assembly with label string containing s2, the east glue of [lil
′
i] must be different

than the west glue of [rjr
′
j] for every adjacent vertex pair (vi, vj) ∈ E.

The pair of # symbols bookending each gadget allow neighboring gadgets

to be attached regardless of the glues used for each [lil
′
i] and [rir

′
i] assembly.

We use the following convention: given an assignment (from {1, 2, 3}) of g1

for g2[lil
′
i]g1 or g1[rir

′
i]g2, let g2 = min({1, 2, 3} − {g1}). Given such glue

assignments for the pair of [lil
′
i] and [rir

′
i] assemblies used in a gadget with label

string sg, Table 3.1 gives sets of #-labeled tiles and smallest mix graphs for

assembling 1[sg]2. The final assembly with label string s can be assembled by

growing a large assembly eastward by alternating successive gadget assemblies

and the assembly 2[#]1. So if G has a valid 3-coloring, constructing a solution

SSAS with a single subassembly for each such label string (2|V | assemblies

total) is possible.

35



[lil
′
i] [rir

′
i] Mix graph and [#] glue assignments

Gadgets in s1: #2lil
′
irir

′
i#

2

2[lil
′
i]1 1[rjr

′
j]2 ((1[#]3 ((3[#]2 2[lil

′
i]1) 1[rir

′
i]2)) 2[#]3) 3[#]2

1[lil
′
i]2 2[rjr

′
j]1 (1[#]3 (3[#]1 1[lil

′
i]2)) (2[rir

′
i]1 1[#]3)) 3[#]2

1[lil
′
i]3 3[rjr

′
j]1 (1[#]2 (2[#]1 1[lil

′
i]3)) (3[rir

′
i]1 (1[#]3 3[#]2))

Gadgets in s2: #2lil
′
i#rir

′
i#

2

2[lil
′
i]1 2[rjr

′
j]1 1[#]3 ((((3[#]2 2[lil

′
i]1) 1[#]2) 2[rir

′
i]1) (1[#]3 3[#]2))

2[lil
′
i]1 3[rjr

′
j]1 ((1[#]3 3[#]2) (2[lil

′
i]1 1[#]3)) (3[rjr

′
j]1 (1[#]3 3[#]2))

1[lil
′
i]2 1[rjr

′
j]2 1[#]3 ((((3[#]1 1[lil

′
i]2) 2[#]1) 1[rjr

′
j]2) 2[#]1) 1[#]2

1[lil
′
i]2 3[rjr

′
j]1 ((1[#]3 (3[#]1 1[lil

′
i]2)) ((2[#]3 3[rjr

′
j]1) 1[#]3)) 3[#]2

1[lil
′
i]3 1[rjr

′
j]2 (1[#]2 (2[#]1 1[lil

′
i]3)) (((3[#]1 1[rjr

′
j]2) 2[#]1) 1[#]2)

1[lil
′
i]3 2[rjr

′
j]1 (1[#]2 (2[#]1 1[lil

′
i]3)) ((3[#]2 2[rjr

′
j]1) (1[#]3 3[#]2))

Table 3.1: Glue assignments for #-labeled assemblies and mix graphs to as-
semble gadgets in s. Assemblies are mixed in the order specified by the nested
parentheses.

If G has no valid 3-coloring, then any solution SSAS must have at least one

pair of bins with products whose label strings are the same lil
′
i or rir

′
i string.

Creating such a pair requires four edges (two incoming edges for each bin

producing one of the assemblies), while creating one such bin only requires two

edges. Moreover, using fewer edges than the previously described construction

elsewhere in the mix graph is impossible, since all other symbols are unique

and each mixing has only two parents by Lemma 3.2.6.

So the smallest SSAS producing an assembly with label string s generated

from a 3-colorable graph with |V | vertices and |E| edges is strictly smaller than

the smallest SSAS for a label string s generated from a 3-colorable graph of

the same size that is not 3-colorable. So the smallest SAS problem is NP-hard.

Theorem 3.2.11. The smallest SAS problem is NP-complete.

We note the interesting distinction between this hardness proof and those

in Chapter 2. Though both use short repeating substrings in the input string

to ensure local consistency and constraint satisfaction, the gadgets in Chap-

36



ter 2 use partitioning of symbols to encode the problem, whereas this reduction

uses glue assignment. Though a partitioning-based reduction is likely possi-

ble, this reduction demonstrates that the smallest SAS problem is difficult in

a way unique to self-assembly: deciding which glues to use. The design of

the reduction also has implications for a related problem on singleton staged

assembly systems:

Problem 3.2.12 (Smallest SSAS). Given an input string s, find the smallest

SSAS with at most k glues that produces an assembly with label string s.

Lemma 3.2.6 proves that the smallest SAS and smallest SSAS problems

are equivalent for inputs with k = 3. Since the reduction used in the proof of

Theorem 3.2.10 uses a system with k = 3, this implies that the smallest SSAS

problem is also NP-complete.

Corollary 3.2.13. The smallest SSAS problem is NP-complete.

3.3 Relation between the Approximability of

CFGs and SSASs

In this section we show that converting between an CFG G in 2NF with

language {s} and a SSAS instance S producing an assembly with label string

s is possible with only a constant-factor scaling. As a result, any O(f(n))-

approximation to either the smallest grammar problem or the smallest SSAS

problem implies an O(f(n))-approximation for both.

3.3.1 Converting CFGs to SSASs

Let G be an CFG in 2NF with language {s}. We begin by converting each

production rule of G′ to a SSAS bin. However, a problem occurs if the same

37



[sA] [sB] [sC ]
1[sA]2 1[sB]3 3[sB]2
1[sA]3 1[sB]2 2[sB]3
2[sA]1 2[sB]3 3[sC ]1
2[sA]3 2[sB]1 1[sC ]3
3[sA]1 3[sB]2 2[sC ]1
3[sA]2 3[sB]1 1[sC ]2

Table 3.2: The set of mixings to produce all necessary glue pair variations for
assembly corresponding to non-terminal A in the production A→ BC where
A, B, C derive the strings sA, sB, and sC , respectively.

non-terminal appears as a right-hand side symbol in several production rules.

Recall that a production in the grammar specifies the left-to-right order in

which the right-hand side symbols appear, while the west-to-east order in

which assemblies attach is determined by their glues. To produce exactly the

product assembly desired in a mixing requires combining reagents with the

correct glues.

We resolve this issue using 3 glues and constructing a copy of every assem-

bly for each of the 6 possible east-west glue pairs. Since the grammar is 2NF,

at most two assemblies are mixed in each bin and so three glue pairs is enough

to uniquely specify the bin’s product. Given a production A→ BC, we create

6 bins whose products that share a common label string (the string derived

from A) and the 6 possible east-west glue pair combinations. The reagents for

these bins are the products of a similar set of 6 bins for assemblies with the

label strings derived from B and C (see Table 3.2).

Theorem 3.3.1. For any CFG G in 2NF with language {s}, a SSAS S can

be constructed from G such that |S| ≤ 6|G|.

Proof. Construct a SSAS S in the following way. First, create 6 bins for each

terminal symbol a in G, one for each east-west glue pair (e.g. 1[a]2, 1[a]3,

2[a]1, etc.). For each production rule A → BC in G (with B and C possibly

38



terminal), use the 12 bins constructed for B and C as the parent bins for the

6 bins for A as in Table 3.2. The resulting mix subgraph has 6 bins for A,

each containing a single product with a distinct east-west glue pair and the

same label string derived by A. So S contains 6 bins for the start symbol of G,

and each bin has a single product with label string s. Since each production

rule had size 2 and was converted into 6 mixings with two parent bins each,

|S| ≤ 6|G|.

3.3.2 Converting SSASs to CFGs

Let S be a SSAS constructing an assembly with label string s. Convert the

mix graph M = (V,E) of S to a grammar by creating a terminal symbol

for each root vertex in V , a non-terminal symbol for each non-root vertex in

V , and a production rule for each non-terminal symbol. For each production

rule, the r.h.s. symbols are those corresponding to the children of the vertex in

M , and the order of the symbols is determined by the order that the reagent

assemblies appear in the product assembly.

Theorem 3.3.2. For any SSAS S producing an assembly with label string s,

a CFG G with language {s} can be constructed from S such that |G| = |S|.

Proof. The terminal symbols of G are equal to the label strings of their cor-

responding tiles. Each mixing in S produces a single assembly with a label

string equal to the string derived by the corresponding non-terminal symbol

in G, because the production orders the right-hand side symbols in the same

order that they combine in S. So the start symbol of G derives a string equal

to the label string of the assembly produces in the leaf of the mix graph of

S. So G derives s. Each edge of the mix graph of S causes a right-hand side

symbol to appear in a production of G. So |G| = |S|.

39



Note that for any string, the smallest 2NF grammar is at most twice the

size of the smallest unrestricted grammar for any string. This fact, along

with Theorems 3.3.1 and 3.3.2, immediately implies that an approximation

algorithm for either problem transfer to the other at a constant-factor loss.

Corollary 3.3.3. An O(f(n))-approximation algorithm for the smallest gram-

mar problem exists if and only if an O(f(n))-approximation algorithm for the

smallest SSAS problem exists.

Several O(log n)-approximation algorithms to the smallest grammar prob-

lem exist [CLL+05, Ryt02, Sak05, Jeż13], implying that the smallest SSAS

problem is alsoO(log n)-approximable. A barrier to achieving any o(log n/ log log n)-

approximation to the smallest grammar problem also exists. As Lehman

pointed out [Leh02], the best-known approximation to the following problem

is O(log n/ log log n):

Problem 3.3.4 (Generalized shortest addition chain). Given a set S = {n1, n2, . . . , nm}

of positive integers with N = max(S), find the shortest sequence 1 = a0 < a1 <

· · · < ar = N such that S ⊆ {ai | 0 ≤ i ≤ r} and each ai = aj+ak with j, k < i.

The unary version of this problem (where each ni is specified in unary)

is a special case of the smallest grammar problem, as seen by converting an

input integer set S = {n1, n2, . . . , nm} for the generalized unary shortest ad-

dition chain problem to the input string s = #an1#an2# . . .#anm# for the

smallest grammar problem. In 1976, Yao [Yao76] gave an O(logN/ log logN)-

approximation that runs in O(|S| logN) time, i.e. time polylogarithmic for

unary input and polynomial for binary input. Shortly after, in 1981, Downey,

Leong, and Sethi [DLS81] showed that the binary version of the problem is

NP-hard2. Curiously, these results remain the best known for the generalized

2Also called weakly NP-hard in contrast to strongly NP-hard where the problem is NP-
hard for both unary and binary input.

40



shortest addition chain problem. Improving the gap for this problem is a bar-

rier to understanding the approximability of the smallest grammar problem.

3.4 CFG over SAS Separation

Now we show that SASs, unlike SSASs, are not equivalent to CFGs. The proof

is constructive: we give a set of strings and describe a set of SAS instances

that produce assemblies with these label strings. We then show that any CFG

whose language is one of these strings is asymptotically larger than some SAS

instance producing the corresponding label string.

It might appear obvious that allowing bin parallelism should allow a re-

duction in the amount of work needed to construct an assembly. However,

using parallelism has two costs that make saving work difficult. First, for any

smallest SAS, each bin has at most k2 products (Lemma 3.2.4). As a result,

additional parallelism requires more glues, which in turn requires more root

bins, and thus more work. Second, since the goal of an assembly system is

to construct a single goal assembly, bins with parallelism must eventually be

“collapsed” into a single bin with a single object (otherwise the parallelism was

extraneous). Collapsing bins with parallelism involves adding tiles to join the

various assemblies together, and since the glues on each assembly are unique,

creating and mixing the joining tiles requires additional work proportional to

the amount of parallelism in the bin.

To derive an asymptotic bound between SASs and CFGs, we use a special

set of strings that can be built by small SASs but require large CFGs. Each

string consists of a sequence of interleavings of pairs of smaller strings. We

note that the construction is limited to odd values of k, so k is assumed to be

odd when used as a parameter in generating instances of this construction.

41



Intuitively, the strings exploit the incompressibility of interleaved patterns.

Given two strings A4 = a0a1a2a3 and B4 = b0b1b2b3, an interleaving of these

strings is a0b0a1b1a2b2a3b3 created by placing the symbols in the second string

in order between consecutive symbols of the first string. Moreover, a shift per-

mutation or rotation of B4 is any string of the form BiBi+1 . . . B3B1B2 . . . Bi−1

for some 0 ≤ i ≤ 3.

Rytter [Ryt02] proves that the number of factors produced by a variant

of the LZ77 [ZL77] when run on a string is a lower bound for the size of any

grammar deriving the string. Because the LZ algorithm scans the string left-to-

right and produces a new factor for each substring not previously encountered,

every interleaving of A4 with a shift permutation of B4 produces an entirely

new set of factors. So concatenating all such interleavings produces a number

of factors proportional to the length of such a string. The strings Sk described

below are, at a high-level, exactly this construction.

3.4.1 A set of strings Sk

Let Binary(i, `) be the binary representation of i of length `. The following

is a function used to double every symbol in a string:

Double(b1b2b3 . . . bn) = b1b1b2b2b3b3 . . . bnbn

Let s1 ◦ s2 denote the concatenation of string s1 followed by s2. We wish

to encode a number of distinct “symbols” in binary. To construct a suitably

hard-to-compress string, we want to ensure that the beginning and end of each

encoded symbol are clearly delineated. To that end, we define the following

strings for all values of k and all values of i < 2k:

42



Ak,i = (01) ◦Double(Binary(i, 1 + dlog ke)) ◦ (01)

We wish to use these symbols to construct a string with complex structure

(so that it is efficiently constructible using a SAS) but minimal repetition (so

that it is not efficiently constructible using a CFG). To minimize repetition, we

choose a string with the property that no sequential pair of symbols is repeated.

We define the following functions, which are permutations for 0 ≤ x < k:

πk,0(x) = 2x mod k πk,1(x) = 2x+ 1 mod k

We use these two simple functions to construct a more complex permuta-

tion. Let the bits of Binary(i, `) be b1, . . . , b`. Then:

Πk,`,i(j) = πk,b`(πk,b`−1
(. . . πk,b2(πk,b1(j)) . . .))

Because k is odd, this function is a permutation for 0 ≤ j < k. In ad-

dition, as long as 0 ≤ i < 2`, this function has the property that Πk,`,i(j) =(
2` · j + i

)
mod k. That is, for fixed values of k, `, and j, each value of i such

that 0 ≤ i < k will generate a different value of Πk,`,i(j). This permutation

can be used to ensure that no sequential pair of symbols is repeated. To do

so, we construct pairs of symbols as follows:

Ck,i,j = Ak,j ◦ (01)dlog ke ◦ Ak,k+Πk,dlog ke,i(j) ◦ (01)dlog ke

We concatenate these pairs to construct Pk,i = Ck,i,0 ◦Ck,i,1 ◦ . . . ◦Ck,i,k−1.

Note that the length of each Ck,i,j is 12 + 8dlog ke, and therefore the length of

each Pk,i is (12 + 8dlog ke) · k. We concatenate each Pk,i to get the string we

wish to compress:

43



Sk = 01 ◦ Pk,0 ◦ 01 ◦ Pk,1 ◦ 01 ◦ . . . ◦ 01 ◦ Pk,k−1 ◦ 01

In the next two subsections we give bounds on compressing Sk using both

a CFG and a SAS.

3.4.2 A SAS upper bound for Sk

Now we describe a SAS using bin parallelism that produces an assembly with

Sk as its label string. The system is broken down into several subsystems

described in this section. A diagram of the SAS for S3 is seen in Figure 3.3.

Constructing Ak,i for all 0 ≤ i < 2k

Say that we are given 2k glue pairs xi, yi, and that we want to assemble

xi[Ak,i]yi for each 0 ≤ i < 2k. Additionally, let g0, g1, and g2 be three

additional distinct glues. Let ` = 1 + dlog ke.

For each binary string s of length ≤ `, we construct two bins: Is and Fs.

Let s = t ◦ b, where b ∈ {0, 1}. The bin Is will produce an assembly with west

glue g0, east glue g1, and label string Double(t) ◦ b. The bin Fs will produce

an assembly with west glue g0, east glue g2, and label string Double(s). The

product of Is will be constructed by mixing the tile g2[b]g1 with the product of

bin Ft. The product of Fs will be constructed by mixing the tile g1[b]g2 with

the product of bin Is.

To finish this construction, we add the constant-sized reagent assemblies

xi[01]g0 and g2[01]yi to the bin FBinary(i,`). This ensures that for 0 ≤ i < 2k,

the bin FBinary(i,`) has a product with the label string Ak,i. The total number

of mixings required for this construction is Θ(k).

44



Fixed and Rotating Bins

The fixed bin has the following set of products:

1[Ak,0]2, 3[Ak,1]4, . . . , (2k − 1)[Ak,k−1](2k)

The rotating bin has the following set of products:

2[Ak,k+0]3, 4[Ak,k+1]5, . . . , (2k)[Ak,k+(k−1)](2k + 1)

Permutation and Renormalization Bins

Permuting the assemblies in the rotating bin is simulated by attaching permu-

tation tiles to the east and west ends of those assemblies. The permutations

πk,0 and πk,1 are implemented as two sets of 2k tiles, each set in a separate

permutation bin. A third set of 2k tiles are put in a renormalization bins used

to solve a technical issue with the permutation bins.

The permutation bins for πk,0 have a set of single tiles that replace the

primal glues of assembly i (2i+ 2 and 2i+ 3) with the dual glues of assembly

πk,0(i) (2πk,0(i) + 2 + (2k + 1) and 2πk,0(i) + 3 + (2k + 1)) for all assemblies

0 ≤ i ≤ k − 1. The permutation bin for πk,1 is constructed analogously. Each

tile attaches to either the east or west end of the assembly and correspondingly

has the primal and dual glues on its east and west sides. The tiles attaching

to the east end of the assembly have the label 0; the tiles attaching to the west

end of the assembly have the label 1.

The renormalization bin has a pair of single-tile products for changing the

dual glues of assembly i ((2i + 2) + (2k + 1) and (2i + 3) + (2k + 1)) to its

primal glues ((2i+ 2) and (2i+ 3)). The tiles attaching to the east end of each

assembly have the label 1; the tiles attaching to the west end of each assembly

45



have the label 0.

Creating Interleaved Assemblies

The permutation and renormalization bins are applied in a branching manner

to produce all permutation sequences of length `. First πk,0 and πk,1 are

mixed separately with the rotating bin, then πk,0 and πk,1 are each mixed

separately with the products of both of these bins, etc. After each mixing

with a permutation bin, the renormalization bin is mixed with the products.

The result is the tree-like subgraph of the mix graph in the center of Figure 3.3

branching upwards. After all permutation sequences are created, the fixed bin

is mixed with each, creating bins with single products that have label strings

Pk,i for all 0 ≤ i < k.

Combining Interleaved Assemblies

The final step is to combine each assembly with label string Pk,i into a single

assembly. Each assembly is in a separate bin after its production, and has glue

1 on its west side and glue 2k + 1 on its east side. To the assembly with label

Pk,i, the tiles (2k+ 2 + i)[1]1 and (2k+ 1)[0](2k+ 3 + i) are added. Then these

assemblies are combined to produce a single long assembly with glue (2k + 2)

on the west side, and glue (3k + 2) on the east.

Theorem 3.4.1. The SAS described in Section 3.4.2 has size O(k).

Proof. Break the SAS into the following sections:

1. Creating the fixed and rotating bins.

2. Creating the permutation and renormalization bins.

3. Creating the interleaved assemblies.

46



4. Combining interleave assemblies.

Item 1 requires O(k) work to create all Ak,i and mixing them together.

Item 2 requires O(k) work to create three bins, each with a pair of product

tiles for each c-buffered element of the rotating bin. Item 3 requires O(k) work:

this portion of the mix graph resembles an upside-down tree and contains no

more than two leaves per permutation assembly. Item 4 requires O(1) work per

assembly (and thus O(k) work total) to add two location-specifying tiles and

combine it with the other assemblies into a single bin. In total, k interleave

assemblies (one per shift) are created, so O(k) edges are in this portion of the

mix graph. Combining interleave assemblies is done by adding at most two

tiles to each interleave assembly followed by combining them into a single bin.

A constant number of edges exist for each assembly, so O(k) edges exist in

this portion of the mix graph.

3.4.3 A CFG lower bound for Sk

We use a lower bound for the smallest CFG previously used by Rytter [Ryt02]

to develop an approximation algorithm for the smallest CFG problem. In that

work, he defines the LZ-factorization3 of a string s (denoted LZ(s)). Then

LZ(s) is the decomposition of s into substrings s1s2 . . . sm by a single left-to-

right pass, where |s1| = 1 and for each i in 2 ≤ i ≤ m, si is the longest prefix

of the remaining portion of s that appears in s1s2 . . . si−1.

Lemma 3.4.2. For an CFG G deriving a string s, |LZ(s)| ≤ |G|. [Ryt02]

Note that each factor of the LZ-factorization forms a “non-terminal” de-

riving the substring with a single “production rule” encoding the location and

3The specific factorization used is that of the LZ77 algorithm [ZL77] but without self-
referencing, as introduced by Farach and Thorup [FT98].

47



length of the substring. Rytter proves the result by showing that any grammar

must use as many non-terminals as there are factors in the LZ-factorization.

Now we prove properties about the label strings of the assemblies constructed

in Section 3.4.2.

Lemma 3.4.3. All factors in the LZ-factorization of Sk have size less than

16dlog ke+ 26.

Proof. Assume by contradiction that the LZ-factorization of Sk contains some

factor y of size ≥ 16dlog ke + 26. Then the factor is long enough that there

must be some i, j such that Ck,i,j is a substring of y. Let x be the part of the

string preceding y. Then by the definition of LZ factorization, y is a substring

of x, and therefore Ck,i,j is a substring of x.

The string Ck,i,j contains the substring Ak,j. To ensure the correct parity

on sequences of symbols, the portion of x where Ak,j is found must have been

completely generated by some other Ak,j∗ . Then it must be that Ak,j = Ak,j∗

and j = j∗. So the portion of x where Ck,i,j is found must have been com-

pletely generated by some other Ck,i∗,j, where i 6= i∗. Then Ak,k+Πk,dlog ke,i(j) =

Ak,k+Πk,dlog ke,i∗ (j) and it follows that k+Πk,dlog ke,i(j) = k+Πk,dlog ke,i∗(j). There-

fore, i = i∗, which is a contradiction.

Theorem 3.4.4. The smallest CFG with language {Sk} has size Ω(k2).

Proof. By Lemma 3.4.3, the maximum length of an LZ factor is 16dlog ke+29.

The sum of the lengths of the LZ factors is equal to |Sk| = Θ(k2 log k). Hence,

the number of LZ factors is Ω(k2). By Theorem 3.4.2, the size of the smallest

grammar must therefore be Ω(k2).

48



3.4.4 CFG over SAS separation for Sk

We define separation as the maximum ratio of the smallest CFG over the

smallest SAS across all label strings. Here we give bounds on separation,

using the strings Sk for a lower bound (Ω(k)) and a conversion algorithm

from any SAS to a CFG for an upper bound (O(k2)). Recall that k is the

number of glues used in the SAS producing an assembly with label string Sk

in Section 3.4.3 and n = |Sk|.

Theorem 3.4.5. The separation of CFGs over SASs is Ω(k).

Proof. By Theorem 3.4.4, any CFG deriving Sk has size Ω(k2). By Theo-

rem 3.4.1, a SAS of size O(k) exists that produces an assembly with label

string Sk. So the ratio of the size of any grammar deriving Sk to the size of

some SAS instance is Ω(k).

Corollary 3.4.6. The separation of CFGs over SAS is Ω(
√
n/ log n).

Proof. The length of Sk is Θ(k2 log k). So k = Θ(
√
n/ log n). By Theo-

rem 3.4.5, the separation is Ω(k). So the separation is also Ω(
√
n/ log n).

Given that the number of glues is limited in practice, it is natural to con-

sider whether Ω(k) separation is possible for k glues where k � n. We show

this is possible for k = Θ(log n).

Theorem 3.4.7. The separation of CFGs over SASs with O(log n) glues is

Ω(k).

Proof. Define the recursive string Tk,t = 01◦Tk,t−1◦01◦Tk,t−1◦01, where Tk,1 =

Sk, and note that the length of Tk,t is Θ(2t|Sk|) = Θ(2tk2 log k). Since Tk,k

has Sk as a substring, any CFG deriving Tk,k has size Ω(k2) by Theorem 3.4.4.

To construct a SAS to generate this string, we first use the SAS described in

49



Section 3.4.2 to generate an assembly g1[Sk]g2. We can then add a constant

number of tiles to get two assemblies g3[1Sk0]g5 and g5[1Sk0]g4, which when

combined produce the assembly g3[1Sk01Sk0]dg4. We then add two more tiles

to construct the assembly g1[01Sk01Sk01]a2. This process can then be repeated

k times. In total O(k) additional work is performed, so the new SAS has size

O(k). The length n of the string is Θ(2kk2 log k), so k = Θ(log n).

We now give an upper bound on the separation by giving an algorithm

that converts any SAS using k glues to a CFG with a factor O(k2) blowup.

Lemma 3.4.8. Given a SAS S using k glues and producing an assembly with

label string s, a CFG of size O(k2|A|) with language {s} can be constructed.

Proof. For each bin in S and product assembly of the bin, construct one bin

in the SSAS S ′. By Lemma 3.2.4, the number of bins in S ′ will be at most k2

times the number of bins in S.

Now consider what happens when ` bins in S are combined to create a

single bin v with several product assemblies. How many edges must we add

to S ′ to ensure that each product assembly of v is correctly constructed in S ′?

To determine this, define G to be a directed graph with a node corresponding

to each glue and, for each reagent assembly g1[s]g2, a directed edge from g1 to

g2. Then each product assembly of v corresponds to a source-sink pair in G,

and each possible way to construct that assembly corresponds to a path in G

from the source of the assembly to the sink of the assembly.

Say that there exist three glues g1, g2, g3 such that (g1, g2) and (g2, g3) are

edges in G but (g1, g3) is not an edge in G. Then we can mix the assembly

corresponding to the edge (g1, g2) with the assembly corresponding to the edge

(g2, g3) to get an assembly with glue g1 to the west and glue g3 to the east.

This is equivalent to adding the edge (g1, g3) to G. Each such bin requires

50



us to add a constant number of nodes and edges to the mix graph of S ′, and

increases the number of edges in G by one. The graph G can never have more

than k2 edges, so repeated mixings of this type add a total of O(k2) work to

S ′. Hence, any bin in S can be replaced by O(k2) bins with binary mixes in

S ′. As a result, |S ′| = O(k2|S|), and can therefore be converted to an CFG

with size O(k2|S|) by Theorem 3.3.2.

Theorem 3.4.9. The separation of CFGs over SASs is O(k2).

Proof. Let S be a SAS using k glues that produces an assembly with label

string s. By Lemma 3.4.8, there is an CFG of size O(k2|S|) that derives s. So

separation is at most O(k2).

Theorem 3.4.10. The separation of CFGs over SAS is O((n/ log n)2/3).

Proof. Let S be a SAS with k glues producing an assembly with label string

s, |s| = n. Either k = O((n/ log n)1/3) or k = ω((n/ log n)1/3). If k =

O((n/ log n)1/3) then by Lemma 3.4.8 there is an CFG of size O(k2|S|) =

O((n/ log n)2/3·|S|) with language {s}. So the separation is at mostO((n/ log n)2/3).

Now suppose k = ω((n/ log n)1/3). Then |S| = ω((n/ log n)1/3). Lemma 2

of Section 2.2 in [Leh02] shows that there is a CFG of size O(n/ log n) with

language {s}. Hence, the separation is o((n/ log n)2/3). So in both cases the

separation is O((n/ log n)2/3).

We conjecture that the set of strings Sk yields the worst possible separation

and leave this as an open problem:

Conjecture 3.4.11. The separation of CFGs over SASs is Θ(k) and Θ(
√
n/ log n).

51



3.5 Unlabeled Shapes

Though this chapter has focused on labeled 1D assemblies, optimal construc-

tion of unlabeled 1D shapes (with label strings of the form an) using SASs still

remains non-trivial. First, note that any string of the form an can be encoded

by a CFG in 2NF of size O(log n) and this is tight:

Lemma 3.5.1. The smallest CFG with language {an} has size Θ(log n).

Proof. For the upper bound, we can an algorithm equivalent to the one de-

scribed by Brauer [Bra39] for finding short addition chains (first defined in

German by Scholz [Sch37] and English by Brauer). First, write n as a binary

number and create a set of blog nc production rules of the form Ai = Ai−1Ai−1

for i ∈ 1, 2, . . . blog nc and additional rule A0 → a. By definition, each Ai de-

rives the string a2i . Next, create a rule S → Ab1Ab2 . . . Abj where b1, b2, . . . , bj

are the 1-valued indices of the binary representation of n. This rule has size

O(log n), and the start symbol S derives the string a2b1a2b2 . . . a2bj = an. So

the grammar consisting of these rules and start symbol S has language {an}.

Next, consider any smallest grammar G in 2NF with language {s}. For

each rule with two right-hand side symbols, the left-hand side symbol derives

a string of length at most twice the length of either right-hand side symbol.

So the addition of the rule increases |G| by at most 2 and the length of the

longest string derived by G by a factor of 2. So the longest string derived by G

is 2|G|/2. Then the smallest grammar (in 2NF or general form) with language

{an} has size Ω(log |an|) = Ω(log n).

Combining Lemma 3.5.1 and Theorems 3.3.1 and 3.3.2 then implies an

unlabeled (single-labeled) n × 1 assembly can be constructed using a SSAS

of size O(log n) and this is tight. Robert Schweller [Sch13] asked whether

SASs can do substantially better, possibly achieving O(log log n) assembly of

52



a n× 1 assembly as done for two-dimensional binary counters of size Θ(n) as

in [DDF+08a]. Here we show that achieving o((log n)1/3) is not possible by

invoking a prior lemma.

Lemma 3.5.2. Any SAS producing an assembly with label string an has size

Ω((log n)1/3).

Proof. Let S be a SAS with k glues producing an assembly with label string

an. By Lemma 3.4.8, |S| = Ω(log n/k2). Moreover, any SAS with k glues

has at least k distinct tile types and so has size Ω(k). The maximum of

these two bounds is minimized when log n = k3, i.e. k = (log n)1/3. So

|S| = Ω(k) = Ω((log n)1/3).

This result led Schweller to emit “Wow, your paper [referring to [DEIW11]]

is pretty useful.” Now we show that the paper was not all that useful by giving

a stronger bound in Theorem 3.5.4 using a new argument. The existence of a

stronger lower bound is not entirely surprising, as Lemma 3.4.8 is thought to

be weak (Conjecture 3.4.11) and the argument uses a lower bound for intricate

label strings Sk.

Lemma 3.5.3. Any smallest SAS S with k glues producing an assembly with

label string an has size Ω(logk n).

Proof. Let the stage of a bin v be the length of the longest path in the mix

graph from a root bin to v. We bound from above the size of any product

of a bin in stage i, giving a lower bound on the number of stages and thus

|S|. Since S has k glues, each bin has at most k2 reagent assemblies (by

Lemma 3.2.4) and each product contains at most one copy of each reagent

assembly (by Lemma 3.2.2). So the size of any product of a stage-i bin is at

most k2 times the size of any product of a stage-(i − 1) bin and any product

53



of a bin in stage i has size at most (k2)i = k2i. So S must have h stages (and

size at least h), where k2h ≥ n. So |S| = Ω(logk n).

Replacing Ω(log n/k2) with Ω(logk n) in the proof of Lemma 3.5.2 gives a

stronger lower bound on |S| for an:

Theorem 3.5.4. Any SAS producing an assembly with label string an has size

Ω(log n/ log log n).

Although this lower bound is nearly approaching the trivial upper bound,

we believe that there is still room for improvement, possibly by using a more

intricate analysis of the number of distinct glue pairs and size of the largest

product in sequential assemblies.

Conjecture 3.5.5. The smallest SAS producing an assembly with label string

an has size Θ(log n).

54



8[1]2

3[0]9

12[1]4

7[0]11

10[1]6

5[0]13

2[0]8

9[1]3

4[0]10

11[1]5

6[0]12

13[1]7

1[A3,0]2

Rotating bin

Fixed bin

10[1]2

3[0]11

8[1]4

5[0]9

12[1]6

7[0]13

Permutation bin 1 (π3,0)

Permutation bin 2 (π3,1)

7[01]2 2[01]1

7[01]3

3[01]1

3[A3,1]4 5[A3,2]6

2[A3,3]3 4[A3,4]5 6[A3,5]7

Renormalization bin

Figure 3.3: The mix graph for a SAS producing an assembly with label
string S3.

55



4

Polyomino Context-Free

Grammars

The results of Chapter 3 give evidence of the fruitfulness of comparing

CFGs and SASs. However, the results only apply to a special case of staged

self-assembly in which produced assemblies are shapeless one-dimensional as-

semblies. The design of tile and assembly shape is used heavily in assembly

techniques [CFS11, DDF+08a, DDF+12, FPSS12, KSX12, Rot01] and appli-

cations call for assembling a wide range of structures, such a circuits or cages.

So while an understanding of one-dimensional staged assembly is useful, lim-

iting assembly to one dimension leaves a large number of staged self-assembly

techniques and problems untouched.

In Chapter 5 we extend the approach of Chapter 3 to two dimensions, com-

paring context-free grammars to two-dimensional staged self-assembly. These

results have similar flavor to those in Chapter 3, but involve more complex

techniques and constructions. Before this work can begin, we address a essen-

Portions of the work in this chapter have been published as [Win12].

56



tial question: what is a two-dimensional context-free grammar?

In this chapter, we explore this question in three steps that culminate

with a new definition of two-dimensional context-free grammars we call poly-

omino context-free grammars. We begin in Section 4.1 by generalizing strings

to polyominoes : connected arrangements of labels on the square grid. Next,

we review existing definitions of two-dimensional grammars and their short-

comings in Section 4.2. As suggested by the existence of numerous proposed

definitions, each existing definition fails to preserve some significant aspect of

context-free grammars. In particular, all existing definitions fail to either map

non-terminals to subpolyominoes, have languages with arbitrary polyominoes,

or allow parsing and derivation in polynomial-time.

Finally, we introduce polyomino context-free grammars (PCFGs) in Sec-

tion 4.3. Our focus on the smallest grammar problem and singleton languages

proves to be key in developing this new definition, as PCFGs trade the in-

clusion of non-singleton languages for a natural and well-defined notion of

two-dimensional context-free grammars with none of the failures previously

described. A PCFG with language {P} is defined as a recursive decomposi-

tion of P into subpolyominoes, an approach only possible if all languages are

singleton.

4.1 Polyominoes

In this section we define labeled polyominoes and prove a set of results con-

cerning only polyominoes. These results are used in to prove results related

to polyomino context-free grammars, defined in Section 4.3.

57



4.1.1 Definitions

A labeled polyomino or polyomino P = (S, L) is defined by a connected set of

points S on the square lattice (called cells) and a label function L : S → Σ(P )

mapping each cell of P to a label contained in an alphabet Σ(P ). The size

of P is |S|, the number of cells in P , is denoted |P |. The label of the cell at

lattice point (x, y) is denoted L((x, y)) and we define P (x, y) = L((x, y)) for

notational convenience. For convenience in describing constructions, we refer

to the label or color of a cell interchangeably.

A translation of P is a polyomino P ′ = (S ′, L′) such that for some (δx, δy),

S ′ = {(x + δx, y + δy) | (x, y) ∈ S} and L′((x + δx, y + δy)) = L((x, y)) for all

(x, y) ∈ S. Two polyominoes P = (S, L) and P ′ = (S ′, L′) are overlapping if

there exists some (x, y) such that (x, y) ∈ S and (x, y) ∈ S ′. Similarly, two

polyominoes are compatible if for each (x, y), either (x, y) 6∈ S, (x, y) 6∈ S ′, or

P (x, y) = P ′(x, y).

The polyomino P ′ = (S ′, L′) is a superpolyomino of P = (S, L) if there

exists a translation of P that is compatible with P ′ and whose cells are a

subset of S ′. Equivalently, P is a subpolyomino of P ′.

(0, 0) (0, 0)

P P ′

(5, 5)

Figure 4.1: A polyomino P and superpolyomino P ′. The polyomino P ′ is
a superpolyomino of P , since the translation of P by (5, 5) (shown in dark
outline in P ′) is compatible with P ′ and the cells of this translation are a
subset of the cells of P ′.

58



4.1.2 Smallest common superpolyomino problem

The smallest common superpolyomino problem restricted to n×1 polyominoes

is the well-known shortest common superstring problem:

Problem 4.1.1 (Shortest common superstring). Given a set of strings S =

{s1, . . . , sm} with
∑m

1 |si| = n, find the shortest string s such that each si in

S is a substring of s.

The smallest common superstring problem is known to be NP-hard [GMA80],

2.5-approximable [Swe94], and 1.00082-inapproximable [Vas05]. Blum et al. [BJL+94]

proved that the trivial greedy algorithm which repeatedly merges the two

strings with the largest overlap achieves a 4-approximation. Here we show that

the smallest common superpolyomino problem is O(n1/3−ε)-inapproximable:

Problem 4.1.2 (Smallest common superpolyomino). Given a set of polyomi-

noes S = {P1, . . . , Pm} with
∑m

1 |Pi| = n, find the smallest polyomino P such

that each Pi in S is a subpolyomino of P .

Our reduction is from the chromatic number problem, the optimization

version of the k-coloring problem, where the goal is to find the smallest k for

which a k-coloring exists:

Problem 4.1.3 (Chromatic number). Given a graph G = (V,E), find the

smallest k such that G admits a k-coloring.

The chromatic number problem is easily shown to be NP-hard by a re-

duction from k-coloring, and was shown to be difficult to approximate within

almost any non-trivial factor by Zuckerman [Zuc07]:

Lemma 4.1.4. The chromatic number problem is O(|V |1−ε)-inapproximable

for all ε > 0. [Zuc07]

59



The reduction Given a graph G = (V,E), convert each vertex v ∈ V into

a polyomino Pv that encodes v and the neighbors of v in G (see Figure 4.2).

Each Pv is a rectangular 2|V |×|V | polyomino with up to |V |−1 single squares

removed. The four corners of all Pv have a common set of four colors: green,

blue, purple, and orange. Let the lower-left corner of Pv be (0, 0). Cells at

locations {(2i+1, 1) | 0 ≤ i < |V |} are colored black if vi = v, red if (v, vi) ∈ E,

or are empty locations if vi is not v or a neighbor of v. All remaining cells are

colored gray.

v1 v7

v2 v5

v3

v4 v6

P1 P2 P3 P4

P5 P6 P7

Figure 4.2: An example of the set of polyominoes generated from an input
graph by the reduction in Section 4.1.2.

Consider how two polyominoes Pu and Pv can be compatible and over-

lapping. Because the four corners have unique colors, Pu and Pv are only

compatible when these four locations in Pv are translated to the same loca-

tions in Pu. In this translation, the cells at location (2i + 1, 1) in Pu and Pv

are compatible exactly when (u, v) 6∈ E, i.e. when u and v are not neighbors.

All other cells are gray and are compatible.

The superpolyomino formed by a pair of compatible and overlapping poly-

ominoes Pu and Pv has the common set of four colored corner cells, two black

cells corresponding to u and v, and a number of red cells corresponding to the

combined neighborhoods of u and v. More generally, any set of two or more

polyominoes overlap to form a superpolyomino if and only their corresponding

60



vertices form an independent set I. We call the superpolyomino resulting from

such a set of overlapping polyominoes a deck (see Figure 4.3).

Each deck is a rectangular 2|V | × |V | polyomino of mostly gray cells, with

the common set of four colored corner cells, a black cell for each vertex in I,

a collection of red cells for the neighbors of vertices in I, and up to |V | − 2

single cells removed for the vertices neither in I nor the neighborhood of I.

Since polyominoes can only overlap to form decks, any superpolyomino of the

polyominoes {Pv | v ∈ V } consists of a disjoint arrangement of decks.

{P1, P7} {P2, P6} {P3} {P4, P5}

v1 v7

v2 v5

v3

v4 v6

Figure 4.3: An example of a 4-deck superpolyomino and corresponding 4-
colored graph. Each deck is labeled with the input polyominoes the deck
contains, e.g. the leftmost deck is the superpolyomino of overlapping P1 and
P7 input polyominoes.

Recall that each Pv is a 2|V | × |V | rectangle with |V | cells colored black,

red, or are not present. The size of Pv is then between 2|V |2−|V |+1 and 2|V |2

depending upon the number of neighbors of v, and each deck of polyominoes

also has size in this range.

Lemma 4.1.5. For a graph G = (V,E), there exists a superpolyomino of size

at most 2k|V |2 for polyominoes {Pv | v ∈ V } if and only if the vertices of V

can be k-colored.

Proof. First, consider extreme sizes of superpolyominoes consisting of k and

k + 1 decks. For any V and k with 1 ≤ k ≤ |V |:

61



(2|V |2 − |V |)(k + 1) = 2|V |2k + 2|V |2 − |V |k − |V |

= 2|V |2k + |V |(2|V | − (k + 1))

= 2|V |2k + |V |(|V | − 1)

> 2|V |2k

That is, any superpolyomino of k + 1 or more decks is larger than any su-

perpolyomino of k decks. Now we prove both implications of the lemma. First,

assume that a superpolyomino of size at most 2|V |2k exists. Then the super-

polyomino must consist of at most k decks. Each deck is the superpolyomino

of a set of polyominoes forming an independent set, so G can be k-colored.

Next, assume G can be k-colored. Then the polyominoes {Pv | v ∈ V } can be

translated to form k decks, one for each color, each with size at most 2|V |2.

Placing these decks adjacent to each other yields a superpolyomino of size at

most 2|V |2k.

Note that only |V | cells of each Pv are distinct and depend on v, while the

other 2|V |2 − |V | cells are identical for all Pv. The extra cells are needed for

the inequality used in Lemma 4.1.5; their purpose is to “drown out” variation

in the size of each deck due to missing cells.

Theorem 4.1.6. The smallest common superpolyomino problem is O(n1/3−ε)-

inapproximable for any ε > 0.

Proof. Consider the smallest common superpolyomino problem for the poly-

ominoes generated from a graph G = (V,E) with chromatic number k. There

are |V | of these polyominoes, each of size Θ(|V |2), so the polyominoes have

62



total size n = Θ(|V |3).

By Lemma 4.1.5, a superpolyomino of size at most 2|V |2k′ exists if and

only if there exists a k′-coloring of G. So by Lemma 4.1.4, finding a super-

polyomino of size at most 2|V |2k′ with 2|V |2k′
2|V |2k = k′

k
= O(|V |1−ε) is NP-hard.

So the smallest common superpolyomino problem is O(|V |1−ε) = O(n1/3−ε)-

inapproximable.

Now we show that the same problem restricted to polyomino sets of a

single color remains NP-hard. Our reduction is from the set cover problem

using families of polyominoes as seen in Figures 4.4 and 4.5.

Problem 4.1.7 (Set cover). Given a universe U = {1, 2, . . . , u} and set of

sets S = {S1, . . . , Sm} with
⋃

1≤i≤m Si = U , find the smallest subset S ′ ⊆ S

such that
⋃
Si∈S′ Si = U .

Lemma 4.1.8. The set cover problem is NP-hard. [Kar72].

Given an instance of the set cover problem, we create a set of u universe

polyominoes and one set polyomino. The universe polyominoes {P1, P2, . . . , Pu}

each consist of a (u + 1) × (u + 1) base, a 1 × 2u flagpole, and a u × 1 flag.

The lower-left corners of the three components for polyomino Pi are placed at

(0, 0), (0, u), and (1, u+ 2i), respectively.

base puncture

flagpole flags

Figure 4.4: The components of universe polyominoes and set gadgets used in
the reduction from set cover to the smallest common superpolyomino problem.

63



The set polyomino P consists of a set of m punctured bases : a base with cell

(1, 1) missing. These bases are arranged horizontally and attached by single

cells. Each punctured base has a flagpole and some number of flags (called a set

gadget) encoding the elements of a set Si in S. For the set Si = {e1, e2, . . . , el},

flags are placed at locations {((u+ 2)(i− 1) + 1, u+ 2ej) | 1 ≤ j ≤ l}.

Universe polyominoes Set polyomino

Figure 4.5: An example of the set of polyominoes generated from the input set
{{1, 2}, {1, 4}, {2, 3, 4}, {2, 4}} by the reduction from set cover to the smallest
common superpolyomino problem.

Consider forming a superpolyomino of the set polyomino P and some uni-

verse polyomino Pi corresponding to an element i ∈ U . Define a translation

of Pi that places the lower-left corner of its base at the lower-left corner of a

punctured base of P as an alignment of the bases. If the base of some Pi is

not aligned with a punctured base of P , then the resulting superpolyomino

is at least as large as any superpolymino of P and all Pi in which each Pi is

aligned with some base:

Lemma 4.1.9. Any superpolyomino of the set polyomino P and universe poly-

omino Pi in which the base of Pi is not aligned with the punctured base of a

set gadget corresponding to a set containing ei has size at least P + u.

Proof. If the base of Pi is aligned with the punctured base of a set gadget that

does not correspond to a set containing i, then the cells of the flag of Pi do not

overlap with the cells of P . The flag has u cells, and so the superpolyomino

64



has size at least |P |+ u.

If the base of Pi is not aligned with any punctured base in P , then it must

be horizontally or vertically misaligned. If the base is horizontally misaligned,

then some column that does not contain any punctured base of P contains

cells from the base of Pi. Such a column then must contain at least u+ 1 cells

of Pi and at most 1 cell of P , so the superpolyomino has size at least |P |+ u.

If the base is not horizontally misaligned but is vertically misaligned, then

some row containing a row of the base of Pi has at most 1 cell of P . This

row is either a row entirely below or above the set gadget aligned with Pi

or a row that contains a cell of the flagpole but no flag. In either case, the

superpolyomino has at least u + 1 cells of Pi and at most 1 cell of P , so the

superpolyomino has size at least |P |+ u.

Intuitively, Lemma 4.1.9 implies that “playing by the rules” and aligning

each universe polyomino Pi with a set gadget in P is always better than “cheat-

ing” by not aligning some universe polyomino with any punctured base. So

finding a minimum superpolyomino is equivalent to deciding which set gadget

to align each universe polyomino with, and the goal is to find set of alignments

that minimize the number of “patched” punctured bases (see Figure 4.6).

Figure 4.6: The smallest common superpolyomino of the polyominoes in Fig-
ure 4.5, corresponding to the set cover {S1, S3}.

Theorem 4.1.10. The smallest common superpolyomino problem for one-

color polyomino sets is NP-hard.

65



Proof. By Lemma 4.1.9, the smallest common superpolyomino of the entire set

of universe polyominoes and the set polyomino has each universe polyomino

Pi aligned with some set gadget of P corresponding to a set containing i.

Each set gadget used by some universe polyomino increases the size of the

superpolyomino by 1. So a superpolyomino of size |P |+ k exists if any only if

there exists a set cover of size k. Then by Lemma 4.1.8, finding the smallest

superpolyomino is NP-hard.

We conjecture that this problem is approximable within some small con-

stant factor, possibly even using a greedy algorithm.

Conjecture 4.1.11. The smallest common superpolyomino problem for one-

color polyomino sets has a c-approximation for some constant c > 1.

4.1.3 Largest common subpolyomino problem

Generalizing the shortest common superstring problem to the smallest com-

mon superpolyomino problem (on polyomino sets with multiple colors) yielded

a problem that was still in NP, but much more inapproximable. On the other

hand, the longest common substring problem is solvable in polynomial time:

Problem 4.1.12 (Longest common substring). Given a set of strings S =

{s1, . . . , sm} with
∑m

i=1 |si| = n, find the longest string s such that s is a

substring of each si ∈ S.

Hui [Hui92] showed that the longest common substring problem is solvable

in O(n) time by reducing the problem to an ancestor problem in the generalized

suffix tree [Wei73, GK97] constructed from the input strings. Somewhat sur-

prisingly, generalizing the longest common substring problem yields a highly

inapproximable problem:

66



Problem 4.1.13 (Largest common subpolyomino). Given a set of polyomi-

noes S = {P1, . . . , Pm} with
∑m

i=1 |Pi|, find the largest polyomino P such that

P is a subpolyomino of every polyomino in S.

Like the smallest common superpolyomino problem, we achieve O(n1/3−ε)-

inapproximability for the largest common subpolyomino problem (Theorem 4.1.17).

A similar reduction combined with a classic number-theoretic result gives

O(n1/4−ε)-inapproximability for the problem restricted to one-color polyomino

sets (Theorem 4.1.20). The reductions are done from the independent set

problem, a problem closely related to the chromatic number problem:

Problem 4.1.14 (Independent set). Given a graph G = (V,E), find the

largest set of vertices S ⊆ V such that for any pair of vertices vi, vj ∈ S,

(vi, vj) 6∈ E.

In the same work proving the inapproximability of the chromatic num-

ber problem (Lemma 4.1.4), Zuckerman [Zuc07] gave a similar result for the

independent set problem:

Lemma 4.1.15. The independent set problem is O(|V |1−ε)-inapproximable for

all ε > 0. [Zuc07]

In Section 4.1.2, the chromatic number problem was reduced to the small-

est common superpolyomino problem by creating a set of polyominoes that

encode the independence constraints of the vertices. The goal was then to min-

imize the union of a compatible arrangement of these polyominoes. A similar

idea is used for the reduction here: a set of polyominoes is used to encode

the independence constraints of the vertices, and the goal is to maximize the

intersection of a compatible arrangement of the polyominoes.

67



The reduction Given a graph G = (V,E), construct a polyomino Pv for

each v ∈ V , and an additional polyomino Pbase. The polyomino Pbase is a

(2|V | − 1) × (|V | + 1) rectangle with gray alternating columns missing, save

for their bottommost cells. The resulting shape is a comb, and the present

columns are comb teeth. The bottommost row alternates between the gray

color of the comb teeth, and |V | other distinct colors (see Figure 4.7).

Each polyomino Pv has two choice gadgets connected horizontally with a

single row of width 2|V |−1. The two choice gadgets are each identical to Pbase

with the exclusion of one or more comb teeth found. For the polyomino Pvi

with 1 ≤ i ≤ |V |, the left choice gadget has column 2i − 1 removed and the

right choice gadget has the columns {2j − 1 | (vi, vj) ∈ E} removed, i.e. the

set of columns corresponding to the neighbors of vi. An example of a graph

and corresponding polyominoes is seen in Figure 4.7.

v1 v7

v2 v5

v3

v4 v6

P2

P3 P4

P5 P6

P7

P1Pbase

Figure 4.7: An example of the set of polyominoes generated from an input
graph by the reduction in Section 4.1.3.

68



Starting with Pbase as the largest possible common subpolyomino, the sub-

polyomino must fit into one of two choice gadgets in each polyomino Pv (seen

in Figure 4.8). So either the comb tooth corresponding to v or the comb teeth

corresponding to the neighbors of v are missing.

v1 v7

v2 v5

v3

v4 v6

P2

P3 P4

P5

P1

P6

P7

Pbase

Figure 4.8: An example of a corresponding largest subpolyomino and maxi-
mum independent set (top) and locations of the subpolyomino in each poly-
omino produced by the reduction.

Lemma 4.1.16. For a graph G = (V,E), there exists a common subpolyomino

of size at least 2|V | − 1 + k|V | if and only if there exists an independent set of

vertices in V of size at least k.

Proof. Let Pmax be the largest common subpolyomino for the set of polyomi-

noes generated from a graph G = (V,E). Then Pmax contains at least one

non-gray cell, as every connected set of gray cells in Pbase has size at most

|V |+ 1 and the bottommost row of Pbase is a common subpolyomino and has

size 2|V |−1. Furthermore, since Pmax contains a non-gray cell, it contains the

69



entire bottommost row of Pbase, as otherwise it can be extended to include this

row. Finally, since every column of containing more than one cell is a comb

tooth, every column of Pmax should contain either one cell or |V |+ 1 cells. So

Pmax has shape and pattern identical to Pbase except for some number of some

missing teeth.

Consider the forward direction of the implication, with a common subpoly-

omino Psoln such that |Psoln| ≥ 2|V | − 1 + k|V |. By previous arguments, Psoln

must have at least k teeth. Consider a pair of teeth ti, tj in Psoln corresponding

to vertices vi, vj ∈ V . Since Pvi contains Psoln and ti is not found in the left

choice gadget of Pi, the right choice gadget of Pi must contain Psoln. So the

right choice gadget has teeth ti and tj and thus (vi, vj) 6∈ E. So the set of

vertices corresponding to the set of teeth in Psoln is an independent set, and

G has an independent set of size at least k.

Proving the backwards direction is nearly the same. Given an indepen-

dent set I ⊆ V with |I| = k, construct a comb polyomino Psoln with teeth

corresponding to the set of vertices in the independent set. This polyomino

has size 2|V | − 1 + k|V |, as the bottommost row has size 2|V | − 1 and each

tooth has size |V |. Consider placing Psoln inside one of two choice gadgets for

a polyomino Pv. If v 6∈ I, then Psoln does not have the tooth corresponding to

v and is a subpolyomino of the left choice gadget of Pv. If v ∈ I, then since

I is an independent set, none of the teeth corresponding to the neighbors of

v are found in Psoln, and Psoln is a subpolyomino of the right choice gadget

of Pv. So the constructed Psoln is a subpolyomino of every Pv (and Pbase by

construction) and has size at least 2|V | − 1 + k|V |.

Theorem 4.1.17. The largest common subpolyomino problem is O(n1/3−ε)-

inapproximable.

Proof. The proof proceeds identically to that of Theorem 4.1.6. Consider the

70



largest common subpolyomino for the polyominoes generated from a graph

G = (V,E) with independence number k. There are |V |+ 1 of these polyomi-

noes, each of size Θ(|V |2), so the polyominoes have total size n = Θ(|V |3).

By Lemma 4.1.16, a subpolyomino of size at least 2|V | − 1 + k′|V | ex-

ists if and only if there exists an independent set of size at least k′. So by

Lemma 4.1.15, finding a subpolyomino of size at least 2|V | − 1 + k′|V | with

2|V |−1+k|V |
2|V |−1+k′|V | ≥ 1

2
k|V |
k′|V | = O(|V |1−ε) is NP-hard. So the largest common subpoly-

omino problem is O(|V |1−ε) = O(n1/3−ε)-inapproximable.

Unlike the smallest common superpolyomino problem, we are also able

to achieve polynomial inapproximability for one-color polyomino sets. The

reduction is modified to replace the distinct colors of the cells at the bases

of teeth with distinct horizontal spacings between teeth. The spacings used

are generated by a set of integers whose pairwise distances are each distinct.

Sidon [Sid32] showed that for some c > 0, there exists a subset of the integers

{1, 2, . . . , cn4} of size n such that all pairwise sums of the integers are distinct.

Erdös and Turan [ET41] showed that the same result applies to the set of

integers {1, 2, . . . , c′n2} for some c′ > 0, by giving an example of such a set:

Lemma 4.1.18. For any prime p and four integers a1, a2, a3, a4 ∈ {2pi +

(i2 mod p) | 1 ≤ i < p}, if a1 + a2 = a3 + a4 then {a1, a2} = {a3, a4} [ET41].

Since n integers induce
(
n
2

)
pairwise distances, a lower bound of Ω(n2)

applies, so this result is asymptotically tight. We transform this result into a

slightly different form regarding the distances (differences) between integers:

Lemma 4.1.19. For any prime p and four integers a1, a2, a3, a4 ∈ {2pi +

(i2 mod p) | 1 ≤ i < p}, if a1 − a2 = a3 − a4 with {a1, a2} 6= {a3, a4}, a1 6= a2,

a3 6= a4, then a1 = a3 and a2 = a4.

71



Proof. Suppose such a set of integers is given. Since a1 − a2 = a3 − a4, then

a1 + a4 = a3 + a2 and by Lemma 4.1.18, {a1, a4} = {a3, a2}. Also, a1 6= a4 and

a2 6= a3, since otherwise |{a1, a4}| = |{a2, a3}| = 1 and a1 = a2. Then since

a1 6= a2 and a3 6= a4, a1 = a3 and a4 = a2.

From this result the necessary modification follows: rather than place teeth

in every other column of Pbase and each Pv, select a prime p ≥ |V | + 1 and

place teeth in columns {2(2pi+ (i2 mod p))− 1 | 1 ≤ i < p}. Then any pair of

teeth found in a common subpolyomino corresponds to a distinct pair of teeth

in the choice gadgets, and any set of teeth corresponds to a well-defined set of

vertices of the input graph.

Theorem 4.1.20. The largest common subpolyomino problem for polyomino

sets with a one-symbol alphabet is O(n1/4−ε)-inapproximable.

Proof. We modify the previous construction as described: for both Pbase and

each Pv, replace the multi-colored choice gadgets with one-color choice gadgets.

The bottommost row of the choice gadget has width f(p) = 2(2p(p − 1) +

((p− 1)2 mod p))− 1 = 4p2 − 4p + 1, as does the single row connecting both

choice gadgets. For each tooth ti in column 2i− 1 of a gadget in the original

construction, place a tooth with height f(p) in column 2(2pi+(i2 mod p))−1.

Consider the largest common subpolyomino Pmax of this modified one-

color set of polyominoes for an input graph G = (V,E). Assume G has an

independent set of size at least two. Then |Pmax| ≥ 3f(p) by arguments in the

proof of Theorem 4.1.17.

Because |Pmax| ≥ 3f(p) and is contained in Pbase, Pmax has at least two

columns containing multiple cells. Pick two such columns separated by hor-

izontal distance d. By the construction and Lemma 4.1.19, columns with

multiple cells separated by distance d appear only once in each choice gadget.

72



So Pmax is contained in one of two choice gadgets in each Pv, and so contains

the entire bottommost row of Pbase. Then Pmax has the same properties of

Pmax in the proof of Theorem 4.1.17: containment in one of two choice gad-

gets in each Pv, containing the entire bottommost row of Pb, and full teeth

selected from the teeth of Pbase. So the teeth in Pmax correspond to a largest

independent set I ⊆ V .

Now consider the inapproximability factor achieved. The well-known Cheby-

shev’s theorem1 [Erd32, Ram19] says that a prime p such that |V | < p < 2|V |

exists, and so such a p can be found by naive primality testing in O(|V |3/2)

time and f(p) = Θ(|V |2). So each polyomino has total size Θ((|V |+1)f(p)) =

Θ(|V |3) and the entire set of polyominoes has size n = Θ(|V |4).

Then by Lemma 4.1.15, finding a subpolyomino of size at least (k′ +

1)f(p) with (k+1)f(p)
(k′+1)f(p)

≥ 1
2
k
k′

= O(|V |1−ε) is NP-hard. So the largest com-

mon subpolyomino problem for one-color sets of polyominoes is O(n1/4−ε)-

inapproximable.

4.1.4 Longest common rigid subsequence problem

Now we apply the ideas from Section 4.1.3 to give a new simple proof of a result

on rigid subsequences of strings: subsequences where each symbol has a fixed

offset from the first symbol of the sequence. A rigid sequence is a pair of se-

quences ((c1, c2, . . . , cm), (o1 = 1, o2, . . . , om)) where (c1, . . . , cm) is a sequence

of symbols and (o1, . . . , om) is a strictly increasing sequence of integer offsets

specifying the relative positions of each ci relative to c1. Similarly, a rigid sub-

sequence of a string s is a rigid sequence ((c1, . . . , cm), (o1, . . . , om)) such that

for some integer δ, the (oi+δ)th symbol of s is ci for all 1 ≤ i ≤ m. For instance,

the string blabatile has a rigid subsequence ((a, b, l, e), (1, 2, 6, 7)) (let δ = 2).

1Alternatively called “Tschebyschef’s theorem” or “Bertrand’s postulate”.

73



Rigid subsequences can also be denoted by a sequence of symbols with whites-

pace or wildcards at indices not appearing in the offset sequence, e.g. ab le

or ab...le. The length of a rigid subsequence r = ((c1, . . . , cm), (o1, . . . , om))

is m, and is denoted |r|. Ma and Zhang [MZ05] and later with Bansal and

Lewenstein [BLMZ10] considered the problem of finding the longest common

rigid subsequence for a set of input strings:

Problem 4.1.21 (Longest common rigid subsequence). Given a set of strings

S = {s1, s2, . . . , sm} with max(|si|) = n, find the longest rigid sequence r such

that r is a rigid subsequence of each si ∈ S.

For instance, the longest common rigid subsequence of {abadale, baracade, clanadare}

is ((a, a, a, e), (1, 3, 5, 7)). Bansal, Lewenstein, Ma, and Zhang [BLMZ10] ob-

tained the following inapproximability result for the problem:

Theorem 4.1.22. The longest common rigid subsequence problem is hard to

approximate within a factor of o(m) and O(n1−ε) for sets of strings with al-

phabet size 4 [BLMZ10].

We give simple proofs of two results nearly matching the result of Bansal et

al. Although the approach was conceived independently by the author, it effec-

tively combines the proof of Jiang and Li [JL95] that the longest common sub-

sequence problem is nδ-inapproximable with the proofs of Theorem 4.1.17and 4.1.20.

Theorem 4.1.23. The longest common rigid subsequence problem is O(m1−ε)-

inapproximable and O(n1−ε)-inapproximable.

Proof. Given a graph G = (V,E), generate a string sbase and set of |V | strings

{sis′i | 1 ≤ i ≤ |V |}, with:

sbase = a1a2 . . . a|V |

74



si = a1a2 . . . ai−10ai+1 . . . a|V |−1a|V |

s′i = f(i, 1)f(i, 2) . . . f(i, |V | − 1)f(i, |V |)

and f(i, j) defined as 0 if (vi, vj) ∈ E and ai otherwise. For instance, if

|V | = 5 and vertex v3 has neighbors v1, v2, and v5, then s3 = a1a20a4a5 and

s′3 = 00a3a40.

Consider a rigid subsequence r = ((c1, . . . , cm), (o1, . . . , om)) of the gener-

ated string set. Since r is a rigid subsequence of sbase, |r| ≤ |V | and ci 6= 0

for all ci. Moreover, since each ai appears once in ascending order in sbase and

thus (c1, . . . , cm), r is a rigid subsequence of either si or s′i for each 1 ≤ i ≤ |V |.

Now consider the set of vertices I = {vi | ai ∈ (c1, . . . , cm)}, which we

claim is an independent set for G. For each vertex vi ∈ I, r must be a rigid

subsequence of s′i and not si, since ai 6∈ si. So for any vertex vj such that

(vi, vj) ∈ E, ai 6∈ s′i, and so vj 6∈ I. That is, I is an independent set. So a

common rigid subsequence r of {sb} ∪ {sis′i | 1 ≤ i ≤ |V |} with |r| ≥ k exists

if and only if G has an independent set of size k. Also, |V | + 1 = m and

2|V | = n. Then by Lemma 4.1.15, approximating the largest common rigid

subsequence is O(|V |1−ε) = O(m1−ε) = O(n1−ε)-inapproximable.

Modifying this string construction in the same way as Theorem 4.1.20 by

replacing unique symbols with unique spacing yields a set of |V | + 1 strings,

each of size O(|V |2). These strings have alphabet size 2 and length n =

Θ(|V |2), so the inapproximability ratio achieved is weaker in n, but applies to

subsequences on a smaller alphabet (size 2) than before (size 4 in Thm. 4.1.22):

Corollary 4.1.24. The longest common rigid subsequence problem is hard to

approximate within a factor of O(m1−ε) and O(n1/2−ε) for strings with alphabet

size 2.

75



One might argue that the complexity of the proof has simply been pushed to

the difficulty of showing that the maximum independent set problem is O(nδ)-

inapproximable. Note that the polynomial inapproximability of the indepen-

dent set problem had been known for at least seven years (1998) [ALM+98]

before the initial results of Ma and Zhang on the largest common rigid subse-

quence problem [MZ05] (2005). Moreover, our reduction can be interpreted as

simply: “The longest common rigid subsequence problem is as hard to approx-

imate as the independent set problem” whereas the argument of [BLMZ10] is

more intricate: “The largest common rigid subsequence problem is as hard to

approximate as a gap-amplified and derandomized version of the maximum

dicut problem (k-fold maximum dicut).”

4.2 Existing 2D CFG definitions

With some helpful results established, we now shift back to the goal of de-

veloping a definition of two-dimensional context-free grammars. Consider the

geometry involved in applying a production rule E → ff to a partially derived

string abEcd to produce abffcd. If the string is placed on a two-dimensional

square lattice such that a occupies the lattice point (0, 0) and d occupies (4, 0),

then applying the rule requires either moving ab one unit to the left or cd one

unit to the right to create two horizontally-adjacent cells for ff to replace the

single cell of E. In two dimensions, this shifting may cause other portions of

the polyomino to shear by intersecting or disconnecting.

Shearing is not an issue for strings because strings always admit the ex-

pansive motion necessary to apply a production rule without causing discon-

nections or overlaps. For polyominoes, such a motion in general is not pos-

sible. Understanding shearing is helpful because existing definitions of two-

76



c c ac cA

Figure 4.9: Two shearing possibilities (middle and right) resulting from ap-
plying the production rule A→ cc.

dimensional grammars can be classified according to how they handle shear-

ing, with three primary approaches used. Each approach results in a definition

lacking at least one of the following properties: tractable (polynomial-time)

parsing and derivation, languages of arbitrary polyominoes, or non-terminals

that corresponding to subpolyominoes.

Picture languages Picture languages (using the terminology of [GR97])

are grammars restricted to rectangular shapes, summarized in the survey of

Cherubini and Pradella [CP09]. Kolam and matrix grammars [SSK72], and tile

grammars [RP05, CRP08] are of this variety. The grammar-based compression

work by Hayashida, Ruan, and Akutsu [HRA10] also uses grammars of this

variety. These definitions restrict production rules to the addition of complete

rows or columns, which avoids shearing by ensuring the necessary expansive

motion is always possible. As a side effect, picture languages are limited to

rectangular polyominoes.

Array grammars The array grammars of Milgram and Rosenfeld [MR71]

and puzzle grammars of Laroche et al. [LNS92] have both been proposed as a

generalized framework for context-free grammars in two dimensions that ac-

commodate general polyominoes. However, both array and puzzle grammars

are permitted to have derivations that result in a self-intersecting polyomino,

which is then simply discarded from the grammar’s language. As Morita et

al. [MYS83] note: “...[array grammars] come to have the ability to sense the

77



local shape of a host array as a kind of ‘context’, in spite of their apparent

context-freeness.”. This results in undecidable emptiness (“Is this grammar’s

language non-empty?”) and PSPACE-hard membership (“Does this gram-

mar’s language contain polyomino p of size n?”) problems for both defini-

tions [MYS83, LNS92]. On the other hand, both problems are P-complete for

one-dimensional CFGs [GHR95].

To address this issue, isotonic (also called isometric) array grammars were

created as a restricted form of array grammars, where production rules are

required to have equally sized left- and right-hand sides, where a special back-

ground symbol (usually #) fills all locations not in the polyomino. Though the

membership problem for this restricted form is “only” NP-complete, rules with

multiple symbols on the left-hand side still gives a form of context-sensitivity.

The intractability of simple problems such as emptiness and membership

not only makes array grammars unsuitable for many applications, but also

causes the smallest grammar problem to likely be NPNP-complete or harder.

Chain codes The picture descriptions of Freeman [Fre61], later extended

to chain codes by Feder [Fed68] and Maurer, Rozenberg, and Welzl [MRW82,

SW85], reduce the general problem to the one-dimensional setting by convert-

ing the polyomino into a sequence of steps taken along a path through the

polyomino. Chain codes only derive unlabeled polyominoes, but can be gen-

eralized by associating a label with each step in the path, i.e. “go up, write

a”, “go left, write b”.

Note that any path through a tree-shaped polyomino must revisit some

cells multiple times, and portions of the path must overlap. So any chain code

deriving such a polyomino must have non-terminals corresponding to sub-

paths that overlap, unlike one-dimensional CFGs, where each non-terminal

78



corresponds to a distinct substring of the derived string. Then not only do

chain codes fail to generalize one-dimensional CFGs, but the correspondence

developed in Chapter 3 between non-terminals/substrings of a CFG and mix-

ings/subassemblies of a SSAS cannot be generalized to two dimensions.

Combinatorics grammars Finally, we note that context-free grammars

on polyominoes have been studied in the setting of combinatorics (see [DF92]

and [DR04] for examples) as a basis for producing generating functions of

polyomino families. However, these grammars are for unlabeled families of

polyominoes and are designed to produce simple generating functions, rather

than form a framework for a universal shape language.

4.3 Polyomino Context-Free Grammars

As examining previous work has shown, a definition of two-dimensional gram-

mars that simultaneously inherits all of the useful properties of one-dimensional

grammars remains an open problem. In the next section we present a new defi-

nition of two-dimensional grammars called polyomino context-free grammars or

polyomino grammars. Polyomino grammars generalize one-dimensional gram-

mars, achieving polynomial-time parsing and derivation, languages of arbitrary

polyominoes, and non-terminals that correspond to subpolyominoes of derived

polyominoes. As a tradeoff, polyomino grammars are limited to singleton lan-

guages.

In Chapter 3 we used grammar-based arguments to give algorithmic and

complexity-theoretic results for the smallest SAS problem for one-dimensional

assemblies. In Chapter 5 we do the same for two-dimensional assemblies. In

both chapters, the only grammars considered are smallest grammars deriving

a given string or polyomino, and so are deterministic and singleton. Then

79



because our application is limited to singleton languages, polyomino grammars

are a more attractive generalization of one-dimensional grammars than existing

definitions.

4.3.1 Deterministic CFGs are decompositions

Let G be a deterministic one-dimensional grammar with L(G) = {s}. Then

every non-terminal symbol N of G derives a unique substring of s which we

denote σ(N). Beginning with the start symbol S, the rule S → AB replaces

S with two non-terminals A and B where σ(S) = σ(A)σ(B). That is, the rule

S → AB decomposes σ(S) into σ(A) and σ(B). Similarly, the rule A → CD

decomposes σ(A) into σ(C) and σ(D), implying σ(S) = σ(C)σ(D)σ(B). In the

case of a rule with more than two right-hand side symbols, e.g. A→ B1 . . . Bj,

σ(A) is decomposed into k substrings.

In the other direction, any recursive decomposition of a string s can be

interpreted as a deterministic grammar with singleton language {s}. Each

substring s1 appearing in the decomposition is equivalent to either a non-

terminal (|s1| > 1) or terminal (|s1| = 1) symbol, and each decomposition of a

substring into two or more substrings s2s3 . . . sk is equivalent to a production

rule replacing the symbol for s1 with the symbols for s2 through sk.

4.3.2 Generalizing decompositions to polyominoes

Consider generalizing the decomposition interpretation of a deterministic one-

dimensional grammar to a language {P}, with P a polyomino. Each non-

terminal symbol N in G corresponds to a single subpolyomino of P (denoted

σ(N)), beginning with the start symbol S. The production rule S → AB

defines a decomposition of σ(S) = P into two subpolyominoes σ(A) and σ(B)

(see Figure 4.10).

80



a b c

c

a b c

c

⇒
a b c

c

b c

c

a

N1 → (N2, (0, 0))(N2, (2, 2))

Figure 4.10: Each production rule in a PCFG deriving a single shape can be
interpreted as a partition of the left-hand side non-terminal shape into a pair
of connected shapes corresponding to the pair of right-hand side symbols.

In one dimension, simply specifying the left-to-right order of the right-hand

side symbols is sufficient to define the decomposition. However, this crucially

used a one-to-one mapping between left-to-right orderings and decompositions.

Consider the case of four production rules A → ab, A → ba, A →ab , A →ba.

These four rules cannot be encoded by distinct left-to-right orderings of the

right-hand side symbols.

More generally, there may be an exponential number of ways to decompose

a polyomino of n cells into two subpolyominoes. For instance, consider the

possible ways to decompose a polyomino with dimensions n/3 × 3 into two

subpolyominoes, each consisting of a polyomino containing a n/3 × 1 row of

cells and some of the remaining n/3 cells. The remaining n/3 cells can be

distributed in 2n/3 ≈ 1.26n possible ways.

We resolve the ambiguity by augmenting each right-hand side symbol

with an (x, y) coordinate specifying the lower-leftmost cell of the symbol’s

subpolyomino relative to the lower-leftmost cell of the left-hand side non-

terminal symbol. For example, the previous four production rules are written:

A → (a, (0, 0))(b, (1, 0)), A → (b, (0, 0))(a, (1, 0)), A → (a, (0, 1))(b, (0, 0)),

A→ (b, (0, 1))(a, (0, 0)).

The addition of these coordinates enables a two-dimensional context-free

81



grammar definition with the property that for any polyomino p, any smallest

grammar G with language {P} is equivalent to a recursive decomposition of

P . A rule A → (B1, (x1, y1)) . . . (Bj, (xj, yj)) is equivalent to the partition

of φ(A) into k subpolyominoes B1 . . . Bj placed at offsets (x1, y1) . . . (xj, yj),

respectively.

One problem remains: what if the polyominoes corresponding to a set

of right-hand side symbols fails to form a valid polyomino? For instance,

multiple right-hand side symbols may have the same coordinate or may fail to

form a connected set of cells. We resolve this problem in a blunt way: any set

of production rules with this property are simply not permitted, a property

checkable in polynomial time by expanding the start symbol into the (unique)

set of terminal symbols and checking their coordinates. This contrasts with the

approach of array grammars that permit the formation of invalid polyominoes,

but discard them from the language. The two approaches can be interpreted

as “compile-time” (polyomino grammars) versus “run-time” (array grammars)

validity testing, with run-time checking incurring a larger cost (PSPACE-hard

derivation versus polynomial-time) in the worst case.

4.3.3 Definitions

Define a polyomino context-free grammar (PCFG) to be a quadruple G =

(Σ,Γ, S,∆). The set Σ is a set of terminal symbols and the set Γ is a

set of non-terminal symbols. The symbol S ∈ Γ is a special start sym-

bol. Finally, the set ∆ consists of production rules, each of the form A →

(B1, (x1, y1)) . . . (Bj, (xj, yj)) where A ∈ Γ and unique to the rule, Bi ∈ N ∪T ,

and each (xi, yi) is a pair of integers.

A polyomino P can be derived by starting with S, the start symbol of G,

and repeatedly replacing a non-terminal symbol with a set of non-terminal and

82



terminal symbols. The set of valid replacements is ∆, the production rules of

G, where a non-terminal symbol A with lower-leftmost cell at (x, y) can be

replaced with a set of symbols B1 at (x+x1, y+y1), B2 at (x+x2, y+y2), . . . ,

Bj at (x + xj, y + yj) if there exists a rule A→ (B1, (x1, y1)) . . . (Bj, (xj, yj)).

Additionally, the coordinates of every set of terminal symbols derivable start-

ing with S must be connected and pairwise disjoint. The polyomino that can

be derived using a grammar G is called the language of G, denoted L(G).

4.4 The Smallest PCFG Problem

Problem 4.4.1 (The smallest PCFG). Given a polyomino P , find the smallest

PCFG G such that L(G) = {P}.

Unfortunately, most of the results achieved indicate that the smallest gram-

mar problem for PCFGs give evidence for the intractability of approximating

the problem within any reasonable factor. We analyze some known approaches

approximation algorithms for the one-dimensional smallest grammar problem

and show that they fail to generalize. On the positive side, we give an approx-

imation algorithm that beats the naive algorithm by a logarithmic factor.

4.4.1 Generalizing smallest CFG approximations

The thesis of Eric Lehman [Leh02] and brief survey by Artur Jeż [Jeż13] pro-

vide an overview of the approaches used in known approximation algorithms

for the smallest grammar problem on strings. Here we consider some results

that suggest generalizing known approximation algorithms and analysis tech-

niques for the smallest CFG problem are unlikely.

83



4.4.2 The O(log3 n)-approximation of Lehman

The O(log3 n)-approximation algorithm for the smallest CFG problem by

Lehman [Leh02] centers around computing (approximately) the shortest com-

mon superstring of a set of strings, i.e. approximations for the shortest com-

mon superstring problem. Blum et al. [BJL+94] showed that the shortest

common superstring problem is NP-hard and that a simple greedy algorithm

that repeatedly merges the pair of strings with the greatest overlap is a 3-

approximation. A number of inapproximability results have been shown, and

currently a bound of 333/332 by Karpinski and Schmied [KS12] is the best

known.

Given the approximation factor and simplicity of thisO(log3 n)-approximation,

it is interesting to ask whether the algorithm could be generalized to two

dimensions. The generalized problem of the smallest common superstring

problem is the smallest common superpolyomino problem, studied in Sec-

tion 4.1.2. In Section 4.1.2, the problem was shown to be inapproximable

within a O(n1/3−ε) factor for any ε > 0 unless P = NP. Thus a generalization

of the O(log3 n)-approximation of Lehman is unlikely to be both polynomial-

time and a O(n1/3−ε)-approximation for the smallest PCFG problem.

4.4.3 The mk lemma

In nearly all of the best-known approximation ratio upper bounds for smallest

grammar approximations (all those achieved by Lehman [Leh02]), the following

result plays a key role:

Lemma 4.4.2 (mk lemma). Let G be the smallest grammar with language

{s}. Then the number of distinct substrings of s with length k is at most

|G|k [Leh02].

84



The power of the mk lemma lies in bounding the complexity of the string

as a function of the size of the smallest grammar. When combined with results

bounding the size of the grammar produced by an approximation algorithm

to the complexity of the string, relative ratios between approximate grammars

and smallest grammars are achieved.

For instance, the BISECTION algorithm recursively splits a string into two

equal-size substrings. At the ith level of recursion, strings of length n/2i−1 are

split into strings of length n/2i. The mk lemma says that if an input string

s has a smallest grammar G, then the number of distinct strings in the dth

level of recursion is not only at most 2i, but also at most |G|n/2i. Then a

simple counting argument using an upper bound of 2i for small i and |G|n/2i

for large i gives a good approximation ratio of O(
√
n/ log n) for BISECTION.

Given the importance of this result in establishing the best-known approxi-

mation ratios for nearly all smallest CFG approximation algorithms, establish-

ing a generalized (but weakened) version would be a good start in understand-

ing the approximation ratios for any future smallest PCFG approximation

algorithms.

Consider a n× n polyomino P with every cell a unique color. Every sub-

polyomino of P distinct, and for any polyomino with b√nc cells, there exists

a subpolyomino of P with the same shape. So P has Ω(λn) subpolyominoes

of size b√nc, where λ > 3.98 by Barequet et al. [BMRR06]. As a result, the

best possible mk-lemma-like result would be a O(m3.98k)-lemma.

4.4.4 A O(n/(log2 n/ log log n))-approximation

Here we give a simple algorithm that improves on the trivial O(n/ log n)-

approximation, if only slightly. The idea is to exploit the relatively few dis-

tinct polyominoes below some size threshold to avoid using Θ(n) distinct non-

85



terminals to derive these small subpolyominoes.

Lemma 4.4.3. For any ε > 0, the number of subpolyominoes of a polyomino

P of size at most 0.2 · log |P |/ log |Σ(P )| is O(|P |0.99).

Proof. Klarner and Rivest [KR73] showed that the number of distinct monochrome

polyominoes with n cells is O(4.65n). Let f(P ) = 4.65|Σ(P )|. Then any poly-

omino P with alphabet Σ(P ) has at most (f(P ))k subpolyominoes of size k.

So the number of subpolyominoes of P with size at most k is O(f(P )k), since

Σk
i=1f(P )i = O(f(P )k), and the number of subpolyominoes of size at most

logf(P )(|P |0.99) is O(|P |0.99). Rounding down the size of the polyominoes:

logf(P )(|P |0.99) = log(|P |0.99)/ log(f(P ))

= 0.99 · log |P |/(log 4.65 + log |Σ(P )|)

≥ 0.99 · log |P |/(2.22 + log |Σ(P )|)

≥ 0.99 · log |P |/(4 · log |Σ(P )|)

≥ 0.2 · log |P |/(log |Σ(P )|)

Theorem 4.4.4. The smallest PCFG problem admits a O(n/(log2 n/ log log n)-

approximation, where n is the size of the input polyomino.

Proof. We use Lemma 4.4.3 to develop the first part of an approximation

algorithm: construct all polyominoes of size at most 0.2 · logP/ log |Σ(P )|

using a grammar of size O(|P |0.99). Next, create a naive grammar of size

O(|P |/k) assembling P , starting with subpolyominoes of size between k/4

and k. These two grammars combined yield a grammar G for P with size

86



O(|P |/(log |P |/ log |Σ(P )|)) + O(|P |0.99) = O(|P |/(log |P |/ log |Σ(P )|)). Any

smallest grammar for P has size at least log |P | + |Σ(P )|, as it has |Σ(P )|

terminal symbols, and each rule creates a polyomino of size at most double

the size of any right-hand side symbol.

Let |P | = n. Then |G| = O(n/(log n/ log |Σ(P )|)) and any grammar

for P has size Ω(log n + |Σ(P )|). Consider two cases for |Σ(P )|: either

|Σ(P )| ≤ log2 n or log2 n < |Σ(P )|. In the first case, the algorithm produces a

grammar of size O(n/(log n/ log log n)) and any grammar has size Ω(log n), so

the approximation ratio is O(n/(log2 n/ log log n)). In the second case, the al-

gorithm produces a grammar of size O(n) and any grammar has size Ω(log2 n),

so the approximation ratio is O(n/ log2 n).

Conjecture 4.4.5. The smallest PCFG problem is O(nc)-inapproximable for

some c > 0.

87



5

Two-Dimensional Staged

Self-Assembly

Here we apply a similar analysis as Chapter 3 but for general two-dimensional

assemblies, using our new definition of two-dimensional context-free grammars,

called PCFGs, from Chapter 4. The work begins with the definitions of sim-

ulation in Section 5.1, used later to develop macrotile systems that trade a

scale factor for other desirable properties.

In Section 5.2 we revisit the complexity of the smallest SAS problem. Recall

that in Section 3.2 the smallest SAS problem was shown to be NP-complete,

where membership in NP follows from inductively “filling in” the products of

each mixing of a non-deterministically selected SAS. In two dimensions such

an approach is not possible and we are forced to give a weaker non-tight result

that the smallest SAS problem can be solved using only polynomial space, i.e.

the problem lies in PSPACE.

The remainder of the chapter (Sections 5.3 through 5.6) explores the sep-

Portions of the work in this chapter have been published as [Win13].

88



aration between PCFGs and SASs. As detailed in Section 5.3, the separation

bounds are more complex than in one dimension, with smaller PCFGs possible

for some polyominoes, and smaller SASs for others. However, the takeaway

of the results remains the same as in one dimension: staged assembly systems

can be significantly smaller than grammars for some inputs, and grammars

can never much smaller than staged assembly systems.

5.1 Definitions

Self-assembly systems in two dimensions use the definitions of Section 3.1, and

differ from one-dimensional systems only in that they lack the restriction that

north and south glues are null. Extending the concept of an assembly’s label

string, the label polyomino of a two-dimensional assembly is the polyomino

with labeled cells corresponding to the locations and labels of the tiles in the

assembly.

The results of Section 5.6.4 use the notion of a self-assembly system S ′ sim-

ulating a system S by carrying out the same sequence of mixings and producing

a set of scaled assemblies. Formally, we say a system S ′ = (T ′, G′, τ,M ′, B′)

simulates a system S = (T,G, τ,M,B) at scale b if there exist two functions

f , g with the following properties:

(1) The function f : (Σ(T ′) ∪ ∅)b
2 → Σ(T ) ∪ ∅ maps the labels of b × b

regions of tiles (called blocks) to a label of a tile in T . The empty label

∅ denotes no tile.

(2) The function g : S ′ → V maps a subset S ′ of the vertices of the mix

graph M ′ to vertices of the mix graph M such that g is an isomorphism

between the subgraph induced by S ′ in M ′ and the graph M .

89



(3) Let P (v) be the set of products of the bin corresponding to vertex v in

a mix graph. Then for each vertex v ∈ M with v′ = g−1(v), P (v) =

{f(p) | p ∈ P (v′)}.

Intuitively, f defines a correspondence between the b-scaled macrotiles in

S ′ simulating tiles in S, and g defines a correspondence between bins in the

systems. Property (3) requires that f and g do, in fact, define correspondence

between what the systems produce.

The self-assembly systems constructed in Sections 5.5 and 5.6 produce only

mismatch-free assemblies : assemblies in which every pair of incident sides of

two tiles in the assembly have the same glue. A system is defined to be

mismatch-free if every product of the system is mismatch-free.

In Section 5.5 we construct systems that produce assemblies whose label

polyominoes are scaled versions of other polyominoes, with some amount of

“fuzz” in each scaled cell. A polyomino P ′ = (S ′, L′) is said to be a (c, d)-fuzzy

replica of a polyomino P = (S, L) if there exists a vector 〈xt, yt〉 with the

following properties:

1. For each block of cells S ′(i,j) = {(x, y) | xt+di ≤ x < xt+d(i+1), yt+dj ≤

y < yt + d(j + 1)} (called a supercell), S ′(i,j) ∩ S ′ 6= ∅ if and only if

(i, j) ⊆ S.

2. For each supercell S ′(i,j) containing a cell of P ′, the subset of label cells

{(x, y) | xt+di+(d−c)/2 ≤ x < xt+d(i+1)+(d−c)/2, yt+dj+(d−c)/2 ≤

y < yt + d(j + 1) + (d − c)/2} consists of c2 cells of P ′, with all cells

having identical label, called the label of the supercell and denoted L(i,j).

3. For each supercell S ′(i,j), any cell that is not a label cell of S ′(i,j) has a

common fuzz label in L′.

90



4. For each supercell S ′(i,j), the label of the supercell L′(i,j) = P (i, j).

Properties (1) and (2) define how sets of cells in P ′ replicate individual cells

in P , and the labels of these sets of cells and individual cells. Property (3)

restricts the region of each supercell not in the label region to contain only

cells with a common fuzz label. Property (4) requires that each supercell’s

label matches the label of the corresponding cell in P .

5.2 The Smallest SAS Problem

In Section 3.2 we defined the smallest SAS problem restricted one-dimensional

staged self-assembly. Here we redefine the problem for two dimensions:

Problem 5.2.1 (Smallest SAS). Given an input polyomino P , find the small-

est SAS using at most k glues that produces an assembly with label polyomino

P .

The problem in one dimension was shown to be NP-complete, giving a tight

bound on the exact-solution complexity of the problem. Since this is the small-

est SAS problem restricted to one-dimensional label polyominoes (strings), the

two-dimensional generalization is also NP-hard.

Ideally, we would show that the generalization of the problem in two di-

mensions still remains in NP. Recall that the proof of Lemma 3.2.10 (the

NP-hardness of the 1D smallest SAS problem) “filled in” the products of all

bins explicitly, crucially using polynomial bounds on the number and size of

product assemblies of each mixing. This idea fails in two dimensions, where the

number of products in a mixing can be exponential in |S|, a fact used in nearly

every construction in this chapter. In place of storing products explicitly, we

use machines that decide whether a given assembly is a product of a mix-

91



ing. Specifically, we give machines P and C for the product and containment

problems :

Problem 5.2.2 (Product). Let S be a SAS with mixing v, and A′, A be

assemblies. 1. Are all products of v subassemblies of A? 2. Is A′ a product of

v? 1

Problem 5.2.3 (Containment). Given a SAS S, mixing v, and assembly A,

are all products of v subassemblies of A?

Define the depth d of a mixing v in a mix graph G to be the longest path

from a root of G to v, i.e. the longest path of nodes ending at v. We start by

describing the machines, followed by a inductive proof of their correctness and

containment in PSPACE, the set of problems solvable using only polynomial

space.

Lemma 5.2.4. The machines P and C decide the product problem and con-

tainment problem, respectively.

Proof. The machines are correct for depth-0 bins trivially. Assume by the

inductive hypothesis that they are correct for the problems on the parents of

v, which have a smaller depth than v. Since P on bin v runs C on v (but not

vice versa), we first prove C correct.

Observe that C accepts if and only if the following two conditions are met:

1. All products of parent bins of v are subassemblies of A (lines 2-4), and 2. For

all assemblies A′ with |A′| ≤ 2|A| with A′ not a subassembly of A, A′ is not an

assemblable assembly of v (line 5). By condition (1), all reagent subassemblies

of v have size at most |A|. Then if v has some product not a subassembly of A

of size larger than 2|A|, it has an assemblable assembly A′ of size between |A|
1An affirmative answer to the product problem means that the answers to both subques-

tions are affirmative.

92



Algorithm 1 Machine P for the product problem

1: procedure P(S, v, A′, A)
2: Run C(S, v, A), reject if it rejects.
3: Non-deterministically select a set I = {B1, . . . , Bj} of assemblies as-

sembling A′.
4: Non-deterministically select a mapping f : I → V to the parents of v.
5: for all Bi ∈ I do
6: Run P(S, f(Bi), Bi, A), reject if it rejects.
7: end for
8: Run T1(S, v, A′, A), reject if it accepts.
9: Accept.

10: end procedure

1: procedure T1(S, v, A′, A) . Determine if A′ can assemble with any
reagent assembly.

2: Non-deterministically select an assembly A′′ with |A′′| ≤ |A|.
3: Non-deterministically select a parent bin p of v.
4: Run P(S, p, A′′, A), reject if it rejects.
5: Reject if A′′ does not assemble with A′.
6: Accept.
7: end procedure

Algorithm 2 Machine C for the containment problem

1: procedure C(S, v, A)
2: for all Parents p of v do
3: Run C(S, p, A), reject if it rejects.
4: end for
5: Run T2(S, v, A), reject if it accepts.
6: Accept.
7: end procedure

1: procedure T2(S, v, A). Determine if there is an assemblable assembly of
v not a subassembly of of A.

2: Non-deterministically select an assembly A′ with |A′| ≤ 2|A| and A′ 6⊆
A.

3: Non-deterministically select a set I = {B1, . . . , Bj} of assemblies as-
sembling A′.

4: Non-deterministically select a mapping f : I → V to the parents of v.
5: for all Bi ∈ I do
6: Run P(S, f(Bi), Bi, A), reject if it rejects.
7: end for
8: Accept.
9: end procedure

93



and 2|A|. But by condition (2), no such assembly exists. So C accepts if and

only if all products of v are subassemblies of A, and so decides the product

problem.

Next, observe that P accepts if and only if the following two conditions are

met: 1. All products of v and its parents are are subassemblies of A (line 2),

and 2. A′ is an assemblable assembly of v (lines 3-7) that does not assemble

with any reagent of v (line 8). Condition (2) is equivalent to A′ being a product

of v, so conditions (1) and (2) are exactly the product problem, and P decides

the problem.

Using these machines on a non-deterministically chosen candidate smallest

SAS yields a machine M for the smallest SAS problem at τ = 1:

Algorithm 3 Machine M for the smallest SAS problem at τ = 1

1: procedureM(P, k, n) . n specifies |S| ≤ n.
2: Non-deterministically select an assembly A with label polyomino P .
3: Non-deterministically select a SAS S with |S| ≤ min(|P |, n) and single

leaf bin l.
4: Run C(S, l, A), reject if it rejects.
5: Run T3(S, l, A), reject if it accepts.
6: Accept.
7: end procedure

1: procedure T3(S, l, A) . Determines if l has a second product contained
in A.

2: Non-deterministically select an assembly A′ ( A.
3: Run P(S, l, A′, A), reject if it rejects.
4: Accept.
5: end procedure

Theorem 5.2.5. The smallest SAS problem at τ = 1 is in PSPACE.

Proof. First, we show M solves the smallest SAS problem at τ = 1. The

machine M accepts if and only if there exists a SAS S with single leaf bin

l and assembly A with label polyomino P such that: 1. Every product of l

is a subassembly of A (line 4), and 2. A is the only subassembly of A that

94



is a product (line 5). In other words, A is the only product of l. So S is a

sufficiently small SAS producing an assembly with label polyomino P , andM

decides the smallest SAS problem at τ = 1.

Next, consider the complexity of M. The machines P and C are NPNP

machines that recursively call themselves a number of times proportional to

the depth d of the input node v. So an instance with an input polyomino P ,

whose smallest SAS S has size |S| ≤ |P | = n, can be solved in polynomial

space.

Theorem 5.2.6. The smallest SAS problem is in PSPACE.

Proof. Notice that even at τ > 1, Lemma 3.2.5 holds, i.e. all products are

subassemblies of the final product. The machines P and C use the τ = 1

assumption in two ways. First, P and C assume that an assembly A′ is an

assemblable assembly of a mixing if it can be decomposed into reagents of

the mixing (lines 3-7 of S and lines 3-7 of T2). Second, P assumes that an

assemblable assemble A′′ is a product of a mixing if it does not assemble with

any reagent of the mixing (lines 2-5 of T1).

The first assumption can be eliminated by replacing lines 3-4 of S and

lines 3-4 of T2 with a recursive decomposition of A′ into pairs of τ -stable

assemblies, effectively choosing an assembly process for A′, and a check that

the resulting subassemblies of A′ are reagents of v. The second assumption can

be eliminated by replacing lines 3-4 of T1 with a non-deterministic selection

a recursive decomposition of A′′ into pairs of τ -stable assemblies, and a check

that the lowest level assemblies in the decomposition are products of parent

mixings. Note that selecting only A′′ with |A′′| ≤ |A| is still sufficient, as C has

already been used to verify that all products (and thus assemblable assemblies)

of v are subassemblies of A.

The modifications yield machines P and C that decide the product and con-

95



tainment problems for general τ , and a machineM still using only polynomial

space.

One barrier to improving the upper bound is coping with the possibly

exponential number of products in each mixing. Proving that they do not exist

in smallest SASs is one approach, as is using some compressed representation

of these sets that enables compact (polynomial) representation and operations

for computing the product set of a bin given the product sets of parent bins.

In any case, we conjecture that upper bound proved here is not tight and that

the problem is NP-complete.

Conjecture 5.2.7. The smallest SAS problem is NP-complete.

However, even showing the problem lies in the polynomial hierarchy ap-

pears difficult. With the exception of the NPNP-complete result of Bryans et

al. [BCD+11], no problems in irreversible tile self-assembly have been shown

to be higher in the polynomial hierarchy than the first level without being

undecidable, so the smallest SAS problem may turn out to be unique in this

regard.

5.3 The Landscape of Minimum PCFGs, SSASs,

and SASs

In Chapter 3, the relationships between CFGs and the two varieties of self-

assembly systems in one dimension were shown to be relatively simple: CFGs

and SSASs are equivalent (up to a constant factor) and SASs can be better

by up to a factor of Ω(
√
n/ log n). The amount of “betterness” was formally

called separation (see Section 3.4.4), and was defined as the maximum ratio

across all strings of the smallest CFG over the smallest SAS for the string.

96



In this chapter we discover that the situation in two dimensions is signifi-

cantly more complex. As we show in Section 5.4, PCFGs can be better than

both SSASs and SASs by a factor of Ω(log n/ log log n). Because of this, we

generalize separation to refer to the maximum ratio of a minimum-size in-

stances of a specified pair of encodings, e.g. “the separation of CFGs over

SASs is Ω(
√
n/ log n)”.

In these terms we are now ready to describe the relationships of these

families of minimum-size objects. In Section 5.4 we prove the aforementioned

result that the separation of SASs and SSASs over PCFGs is Ω(log n/ log log n)

(even for single-label polyominoes), and in Section 5.5 give a constructive proof

that the separation is O(log n), i.e. that the lower bound is nearly tight for

SASs.

In the other direction, we show in Section 5.6.1 that SASs can be much bet-

ter than PCFGs, achieving a separation of Ω(n/ log log n) even for single-label

polyominoes. However, the construction exploits the limited form “context-

sensitivity” found in self-assembly systems, and is an unusual serpentine shape

with many thin, nearly-touching pieces. In Section 5.6.3 the same problem re-

stricted to square assemblies is shown (using a far more complex construction)

to have similar Ω(n/ log n) separation.

5.4 SAS over PCFG Separation Lower Bound

This result uses a set of shapes we call n-stagglers ; an example is seen in Fig-

ure 5.1. The shapes consist of log n bars of dimensions n/ log n × 1 stacked

vertically atop each other, with each bar horizontally offset from the bar

above it by some amount between −(n/ log n − 1) and n/ log n − 1. We

use the shorthand that log n = blog nc for conciseness. Every sequence of

97



log n − 1 integers, each between −(n/ log n − 1) and n/ log n − 1], encodes

a unique staggler and by the pigeonhole principle, some n-staggler requires

log((2n/ log n− 1)logn−1 = Ω(log2 n) bits to specify.

log 28 = 8

n/ log n = 28/8

Figure 5.1: The 28-staggler specified by the sequence of offsets (from top to
bottom) −18, 13, 9,−17,−4, 12,−10.

Lemma 5.4.1. Any n-staggler can be derived by a PCFG of size O(log n).

Proof. A set of O(log n) production rules deriving a bar (of size Θ(n/ log n)×1)

can be constructed by repeatedly doubling the length of the bar, using an

additional log n rules to form the bar’s exact length. Creating the stack of

bars at their relative offsets can be described using a single rule with log n

r.h.s. symbols. So an n-staggler can be derived by a PCFG of total size

O(log n).

Lemma 5.4.2. For every n, there exists an n-staggler P such that any SAS or

SSAS producing an assembly with label polyomino P has size Ω(log2 n/ log log n).

Proof. The proof is information-theoretic. Recall that more than half of all

n-stagglers require Ω(log2 n) bits to specify. Now consider the number of bits

contained in a SAS S. Recall that |S| is the number of edges in the mix graph

of S. Any SAS can be encoded naively using O(|S| log |S|) bits to specify the

mix graph, O(|T | log |T |) bits to specify the tile set, and O(|S| log |T |) bits to

specify the tile type at each leaf node of the mix graph. Because the number

of tile types cannot exceed the size of the mix graph, |T | ≤ |S|. So the total

number of bits needed to specify S (and thus the number of bits of information

98



contained in S) is O(|S| log |S| + |T | log |T | + |S| log |S|) = O(|S| log |S|). So

some n-staggler requires a SAS S such that O(|S| log |S|) = Ω(log2 n) and thus

|S| = Ω(log2 n/ log log n).

Theorem 5.4.3. The separation of SASs and SSASs over PCFGs is Ω(log n/ log log n).

Proof. By the previous two lemmas, more than half of all n-stagglers require

SASs and SSASs of size Ω(log2 n/ log log n) and all n-stagglers have PCFGs of

size O(log n). So the separation is Ω(log n/ log log n).

Note that scaling the n-staggler by a c-factor produces a shape which is

derivable by a CFG of size O(log n+log c). That is, the result still holds for n-

stagglers scaled by any amount polynomial in n. For instance, the O(n)-factor

of the construction of Theorem 5.5.5.

At first it may not be clear how PCFGs achieve smaller encodings. After

all, each rule in a PCFG G or mixing in SAS S specifies either a set of right-

hand side symbols or parent bins and so has up to O(log |G|) or O(log |S|)

bits of information. The key is the coordinate describing the location of each

right-hand side symbol. These offsets have up to O(log n) bits of information

and in the case that G is small, say O(log n), each rule has a number of bits

linear in the size of the PCFG!

5.5 SAS over PCFG Separation Upper Bound

Next we show that the separation lower bound of the last section is nearly

large as possible by giving an algorithm for converting any PCFG G into a

SSAS S with system size O(|G| log n) such that S produces an assembly that

is a fuzzy replica of the polyomino derived by G. Before describing the full

construction, we present approaches for efficiently constructing general binary

counters and for simulating glues using geometry.

99



0

1

1

0

10

00

Increment 0011b by 1, yielding 0100b.

Figure 5.2: A binary counter row constructed using single-bit constant-sized
assemblies. Dark blue and green glues indicate 1-valued carry bits, light blue
and green glues indicate 0-valued carry bits.

The binary counter row assemblies used here are a generalization of those

by Demaine et al. [DDF+08a] consisting of constant-sized bit assemblies, and

an example is seen in Figure 5.2. Our construction achieves O(log n) construc-

tion of arbitrary ranges of rows and increment values, in contrast to the con-

struction of [DDF+08a] that only produces row sets of the form 0, 1, . . . , 22m−1

that increment by 1. To do so, we show how to construct two special cases

from which the generalization follows easily.

Lemma 5.5.1. Let i, j, n be integers such that 0 ≤ i ≤ j < n. There exists a

SSAS of size O(log n) with a set of bins that, when mixed, assemble a set of

j − i+ 1 binary counter rows with values i, i+ 1, . . . , j incremented by 1.

Proof. Representing integers as binary strings, consider the prefix tree induced

by the binary string representations of the integers i through j, which we

denote T(i,j). The prefix tree T(0,2m−1) is a complete tree of height m, and the

prefix tree T(i,j) with 0 ≤ i ≤ j ≤ 2m− 1 is a subtree of T(0,2m−1) with j− i+ 1

leaf nodes See Figure 5.3 for an example with m = 4.

Now let n = 2m − 1. If T(0,n) is drawn with leaves in left-to-right order by

increasing integer values, then the leaves of the subtree T(i,j) appear contigu-

ously. So the subtree T(i,j) has at most 2 log n internal nodes with one child

forming the leftmost and rightmost paths in T(i,j). Furthermore, if one removes

these two paths from T(i,j), the remainder of T(i,j) is a forest of complete trees

100



with at most two trees of each height and 2 log n trees total.

0

0 0 0

0

1

1 1

1 1 1

1

0101

0 1

0100 0101

0 1

1000 1001

0 1

1010 1011

0 1

1100 1101

0

1110

0

0

1

0 1

0001

0 1

0010 0011

1

1111

0

01000000

Figure 5.3: The prefix tree T(0,15) for integers 0 to 24−1 represented in binary.
The bold subtree is the prefix subtree T(5,14) for integers 5 to 14.

Note that a complete subtree of the prefix tree corresponds to a set of all

possible 2h suffixes of length h, where h is the height of the subtree. The

leaves of such a subtree then correspond to the set of strings of length l with

a specific prefix of length l − h and any suffix of length h. For the assemblies

we use the same geometry-based encoding of each bit as [DDF+08a], and a

distinct set of glues used for each bit of the assembly encoding both the bit

index and carry bit value from the previous bit.

Left and right bins. We build a mix graph (seen in Figure 5.4) consisting

of two disjoint paths of bins (called left bins and right bins) that are used to

iteratively assemble partial counter rows i and j by the addition of distinct

constant-sized assemblies for each bit. The partial rows are used to produce the

assemblies in the subtree and missing bit bins (described next). In the suffix

trees, the bit strings of these assemblies are progressively longer subpaths of

the leftmost and rightmost paths in the subtree of binary strings of the integers

i to j.

Subtree bins. Assemblies in subtree bins correspond to assemblies encoding

prefixes of binary counter row values. However, unlike left and right bins that

101



encode prefixes of only a single value, subtree bins encode prefixes of many

binary counter values between i the j – namely a set of values forming a

maximal complete subtree of the subtree of binary strings of integers from i

to j, hence the name subtree bins. For example, if i = 12 and j = 16, then

the set of binary strings for values 12 (01100b) to 15 (01111b) have a common

prefix 011b. In this case a subtree bin containing an assembly encoding the

three bits 011 would be created. Since there are at most 2 log n such complete

subtrees, the number of subtree bins is at most this many. Creating each bin

only requires a single mixing step of combining an assembly from a left or right

bin with a single bit assembly, for example adding a 1-bit assembly to the left

bin assembly encoding the prefix 01b.

Missing bit bins. To add the bits not encoded by the assemblies in the

subtree bins, we create sets of four constant-sized assemblies in individual

missing bit bins. Since the assemblies in subtree bins encode bit string prefixes

of sets of values forming complete subtrees, completing these prefixes with any

suffix forms a bit string whose value is between i and j. This allows complete

non-determinism in the bit assemblies that attach to complete the counter

row, provided they properly handle carry bits. For every bit index missing in

some subtree bin assembly, the four assemblies encoding the four possibilities

for the input and carry values are assembled and placed into separate bins.

When all bins are mixed, subtree assemblies mix non-deterministically with all

possible assemblies from missing bit bins, producing all counter rows whose

binary strings are found in the subtree. In total, up to 4 log n missing bit

bins are created, and each contains a constant-sized assembly and so requires

constant work to produce.

The total number of total bins is clearly O(log n). Consider mixing the

102



{0}
0

0

0

1
or

{1}

or
0

11

1

0

0

0

1

{0, 1}
1

1 0

1
and and and

Left bins Right bins

Bit 0

Bit 1

Bit 2

Bit 3

{1}

{0}

{1}

{1}

{0} {1}

{0} {1}

{0}

Subtree bins

Missing bit bins

{0, 1}

{0, 1}

Row counters

{0} {1}

Figure 5.4: The mix graph constructed for the prefix subtree T(5,14) seen in
Figure 5.3.

left and right bins containing completed counter rows for i and j, all subtree

bins, and all missing bit bins. Any assembly produced by the system must be

a complete binary counter row, as all assemblies are either already complete

rows (left and right bins) or are partial assemblies (subtree bins and missing

bit bins) that can be extended towards the end of the bit string by missing bit

bin assemblies, or towards the start of the bit string by missing bit and then

subtree bin assemblies.

The second counter generalization is incrementing by non-unitary values:

103



Input bits Output bits
bth bit of k bth bit (b− 1)st carry bit bth bit bth carry bit

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 5.1: All bit combinations for a binary adder incrementing n by k.

Lemma 5.5.2. Let k, n be integers such that 0 ≤ k ≤ n and n = 2m. There

exists a SSAS of size O(log n) with a set of bins that, when mixed, assemble a

set of 2m binary counter rows with values 0, 1, . . . , 2m − 1 incremented by k.

Proof. For each row, the incremented value of the bth bit of the row depends

on three values: the previous value of the bth bit, the carry bit from the

(b− 1)st addition, and the bth bit of k. The resulting output is a pair of bits:

the resulting value of the bth bit and the bth carry bit (seen in Table 5.1).

Create a set of four O(1)-tile subassemblies for each bit of the counter,

selecting from the first or second half of the combinations in Table 5.1, resulting

in 4 log n assemblies total. Each subassembly handles a distinct combination

of the bth bit value of the previous row, (b− 1)st carry bit, and bth bit value

of k by encoding each possibility as a distinct glue. When mixed in a single

bin, these subassemblies combine in all possible combinations and producing

all counter rows from 0 to 2m − 1.

Lemma 5.5.3. Let i, j, k, n be integers such that 0 ≤ i ≤ j < n and 0 ≤ k ≤ n.

There exists a SSAS of size O(log n) with a set of bins that, when mixed,

assemble a set of j − i + 1 binary counter rows with values i, i + 1, . . . , j

incremented by k.

104



Proof. Combine the constructions used in the proofs of Lemmas 5.5.1 and 5.5.2

by using mixing sequences as in the proof of Lemma 5.5.1 and sets of four

subassemblies encoding input, carry, and increment bit values as in the proof

of Lemma 5.5.2.

Theorem 8 of Demaine et al. [DDF+08a] describes how to reduce the num-

ber of glues used in a system by replacing each tile with a large macrotile

assembly, and encoding the tile’s glues via unique geometry on the macrotile’s

sides. We prove a similar result for labeled tiles, used for proving Theo-

rems 5.5.5, 5.5.6, and 5.6.11.

Lemma 5.5.4. Any mismatch-free τ = 1 SAS (or SSAS) S = (T,G, τ,M)

can be simulated by a SAS (or SSAS) S ′ at τ = 1 with O(1) glues, system size

O(Σ(T )|T |+ |S|), and O(log |G|) scale.

Proof. The proof is constructive. Produce a set of north macroglue assemblies

for the glue set: O(log |G|)×O(1) assemblies, each encoding the integer label of

a glue i via a sequence of bumps and dents along the north side of the assembly

representing the binary sequence of bits for i, as seen in Figure 5.5. All north

macroglue assemblies share a pair of common glues: an inner glue on the west

end of the south side of the assembly (green in Figure 5.5) and an outer glue

on the west end of the north side of the assembly (blue in Figure 5.5). The

null glue also has the sequence of bumps and dents (encoding 0), but lacking

the outer glue. Repeating this process three more times yields sets of east,

west, and south macroglue assemblies.

For each label l ∈ Σ(T ), repeat the process of producing the macroglue

assemblies once using a tile set exclusively labeled l. Also produce a square

Θ(log |G|)× Θ(log |G|) core assembly, with a single copy of the inner glue on

the counterclockwise end of each face. Use the macroglue and core assemblies

105



Glue 1 (01b)

Glue 1 (01b)

Glue 2 (10b)

Glue 3 (11b)

0

00

1

1 1

1

11

1

11

0

00

1

11

0

0 0

1

1

1

Figure 5.5: Converting a tile in a system with 7 glues to a macrotile with
O(log |G|) scale and 3 glues. The gray label of the tile is used as a label for
all tiles in the core and macroglue assemblies, with the 1 and 0 markings for
illustration of the glue bit encoding.

to produce a set of macrotiles, one for each t ∈ T , consisting of a core assembly

whose tiles have the label of t, and four glue assemblies encode the four glues

of t and whose tiles have the label of t. Extend the mix graph M ′ of S ′ by

carrying out the mixings of M but starting with the equivalent macrotiles.

Define the simulation function f to map each macrotile to the label found on

the macrotile, and the function g to take the portion of M ′ and g to be the

106



portion of the mix graph carrying out the mixings of S.

The work done to produce the glue assemblies is O(Σ(T )|G|), to produce

the core assemblies is O(Σ(T ) log log |G|), and to produce the macrotiles is

O(|T |). Carrying out the mixings of S requires O(|S|) work. Since each

macrotile is used in at least one mixing simulating a mixing in S, |T | ≤

|S|. Additionally, |G| ≤ 4|T |. So the total system size is O(Σ(T )|G| +

Σ(T ) log log |G|+ |T |+ |S|) = O(Σ(T )|T |+ |S|).

Armed with these tools, we are ready to convert PCFGs into SSASs. Recall

that in Section 5.4 we showed that in the worst case, converting a PCFG into

a SSAS (or SAS) must incur an Ω(log n/ log log n)-factor increase in system

size. Here we achieve a O(log n)-factor increase.

Theorem 5.5.5. For any polyomino P with |P | = n derived by a PCFG G,

there exists a SSAS S with |S| = O(|G| log n) producing an assembly with label

polyomino P ′, where P ′ is a (O(log n), O(n))-fuzzy replica of P .

Proof. We combine the macrotile construction of Lemma 5.5.4, the generalized

counters of Lemma 5.5.3, and a macrotile assembly invariant that together

enable efficient simulation of each production rule in a PCFG by a set of

O(log n) mixing steps.

Macrotiles. The macrotiles used are extended versions of the macrotiles in

Lemma 5.5.4 with two modifications: a secondary, reservoir macroglue assem-

bly on each side of the tile in addition to a primary bonding macroglue, and a

thin cage of dimensions Θ(n)×Θ(log n) surrounding each reservoir macroglue

(see Figure 5.6).

Mixing a macrotile with a set of bins containing counter row assemblies

constructed by Lemma 5.5.3 causes completed (and incomplete) counter rows

107



Bonding
macroglue

Cage

Core

Macroglue
activator

Counter row

Reservoir
macroglue

Figure 5.6: A macrotile used in converting a PCFG to a SAS, and examples
of value maintenance and offset preparation.

to attach to the macrotile’s macroglues. Because each macroglue’s geome-

try matches the geometry of exactly one counter row, a partially completed

counter row that attaches can only be completed with bit assemblies that

match the macroglue’s value. As a result, mixing the bin sets of Lemma 5.5.3

with an assembly consisting of macrotiles produces the same set of products

as mixing a completed set of binary counter rows with the assembly.

An attached counter row effectively causes the macroglue’s value to change,

as it presents geometry encoding a new value and covers the macroglue’s pre-

vious value. The cage is constructed to have height sufficient to accommodate

up to n counter rows attached to the reservoir macroglue, but no more.

Because of the cage, no two macrotiles can attach by their bonding macroglues

unless the macroglue has more than n counter rows attached. Alternatively,

one can produce a thickened counter row with thickness sufficient to extend

beyond the cage. We call such an assembly a macroglue activator, as it “ac-

108



tivates” a bonding macroglue to being able to attach to another promoted

macroglue on another macrotile. Notice that a macroglue activator will never

attach to a bonding macroglue’s reservoir twin, as the cage is too small to

contain the activator.

An invariant. Counter rows and activators allow precise control of two prop-

erties of a macrotile: the values of the macroglues on each side, and whether

these glues are activated. In a large assembly containing many macroglues,

the ability to change and activate glues allows precise encoding of how an as-

sembly can attach to others. In the remainder of the construction we maintain

the invariant that every macrotile has the same glue identity on all four sides,

and any macrotile assembly consists of macrotiles with form a contiguous se-

quence of distinct glue values. For instance, the values 4, 5, 6, 7 are permitted,

but not 4, 5, 5, 6 (not distinct) or 4, 5, 6, 8 (not contiguous). These contiguous

sequences are denoted l..u, e.g. 4..7.

Production rule simulation. Consider a PCFG with non-terminal N and

production rule N → (R1, (x1, y1))(R2, (x2, y2)) and a SSAS with two bins

containing assemblies A1, A2 with the label polyominoes of A1 and A2 being

fuzzy replicas of the polyominoes derived by R1 and R2. Also assume A1 and

A2 are assembled from the macrotiles just described, including obeying the

invariant that the glue values are identical on all sides of each macrotile and

are contiguous and distinct across the assembly. Let the glue values for A1

and A2 be l1..u1 and l2..u2, respectively.

First, we change the glue values of A1 and A2 depending on the values l1..u1

and l2..u2. Without loss of generality, assume u1 ≤ u2. Then if u1 < l2, we

increment all values of A1 by l2− u1− 1. Otherwise u1 ≥ l2 and we increment

all values of A2 by u1 − l2 + 1.

109



By Lemma 5.5.3, a set of row counters incrementing all glue values on a

macrotile assembly can be produced using O(log n) work. In both cases the

incrementation results in values that, if found on a common assembly, obey

the invariants. Because each macrotile has a reservoir macroglue on each side,

any bonding macroglue with an activator already attached has a reservoir

macroglue that accepts the matching row counter, so each mixing has a single

product and specifically no row counter products.

Next, select two cells, cR1 and cR2 , in the polyominoes derived by R1 and

R2 adjacent in polyomino derived by N . Define the glue values of the two

macrotiles in A1 and A2 forming the supercells mapped to cR1 and cR2 to be

v1 and v2 and define the pair of coincident sides of cR1 and cR2 to be s1 and

s2. We mix A1 and A2 with activators for sides s1 and s2 with values v1 and

v2, respectively. Activators, because they are nearly rectangular save O(log n)

cells of bit geometry, can also be produced using O(log n) work.

System scale. The PCFG P contains at most n production rules. Also, each

step shifts glue identities by at most n (the number of distinct glues on the

macrotile), so the largest glue identity on the final macrotile assembly is n2. So

we produce macrotiles with core assemblies of sizeO(log n)×O(log n) and cages

of size O(n). Assembling the core assemblies, cages, and initial macroglue

assemblies of the macrotiles takes O(|P | log n + log n + log n) = O(|P | log n)

work, dominated by the core assembly production. Simulating each production

rule of the grammar takes O(log n) work spread across a constant number

of O(log n)-sized sequences of mixings to produce sets of row counters and

macroglue activators.

Applying Lemma 5.5.4 to the construction (creating macrotiles of macrotiles)

gives a constant-glue version of the previous theorem:

110



Theorem 5.5.6. For any polyomino P with |P | = n derived by a PCFG G,

there exists a SSAS S ′ using O(1) glues with |S ′| = O(|G| log n) producing an

assembly with label polyomino P ′, where P ′ is a (O(log n log log n), O(n log log n))-

fuzzy replica of P .

Proof. The construction of Theorem 5.5.5 uses O(log n) glues, namely for

the counter row sub-construction of Lemma 5.5.3. With the exception of

the core assemblies, all tiles of S have a common fuzz (gray) label, so cre-

ating macrotile versions of these tiles and carrying out all mixings involv-

ing these macrotiles and completed core assemblies is possible with O(1 ·

|T | + |S|) = O(|S|) mixings and scale O(log log n). Scaled core assemblies

of size Θ(n log log n)× Θ(n log log n) can be constructed using constant glues

and O(log(n log log n)) = O(log n) mixings, the same number of mixings as

the unscaled Θ(n) × Θ(n) core assemblies of Theorem 5.5.5. So in total,

this modified construction has system size O(|S|) = O(|G| log n) and scale

O(log log n). Thus it produces an assembly with label polyomino that is a

(O(log n log log n), O(n log log n))-fuzzy replica of P .

The results in this section and Section 5.4 achieve a “one-sided” corre-

spondence between the smallest PCFG and SSAS encoding a polyomino, i.e.

the smallest PCFG is approximately an upper bound for the smallest SSAS (or

SAS). Since the separation upper bound proof (Theorem 5.5.5) is constructive,

the bound also yields an algorithm for converting a a PCFG into a SSAS.

111



5.6 PCFG over SAS and SSAS Separation Lower

Bound

Here we develop a sequence of PCFGs over SAS and SSAS separation results,

all within a polylogarithmic factor of optimal. As utilized in Theorem 5.6.11,

the results in this section also hold for polynomially scaled versions of the

polyominoes, showing that the “fuzziness” permitted in Section 5.5 was not

unfair.

Figure 5.7: Two-bit examples of the weak (left), end-to-end (upper right), and
block (lower right) binary counters used to achieve separation of PCFGs over
SASs and SSASs in Section 5.6.

5.6.1 General shapes

In this section we describe an efficient system for assembling a set of shapes we

call weak counters. An example of a rows in the original counter and macrotile

weak counter are shown in Figure 5.8. These shapes are macrotile versions of

the doubly-exponential counters found in [DDF+08a] with three modifications:

112



1. Each row is a single path of tiles, and any path through an entire row

uniquely identifies the row.

2. Adjacent rows do not have adjacent pairs of tiles, i.e. they do not touch.

3. Consecutive rows attach at alternating (east, west, east, etc.) ends.

0

0

1

0

0 0

1 1

0

0 1

1

1

10

0

Figure 5.8: Zoomed views of increment (top) and copy (bottom) counter rows
described in [DDF+08a] and the equivalent rows of a weak counter.

Figure 5.9 shows three consecutive counter rows attached in the final assem-

bly. Each row of the doubly-exponential counter consists of small, constant-

sized assemblies corresponding to 0 or 1 values, along with a 0 or 1 carry

bit. We implement each assembly as a unique path of tiles and assemble the

counter as in [DDF+08a], but using these path-based assemblies in place of

the original assemblies. We also modify the glue attachments to alternate on

east and west ends of each row. Because the rows alternate between incre-

menting a bit string, and simply encoding it, alternating the attachment end

is trivial. Finally, note that adjacent rows only touch at their attachment, but

113



the geometry encoded into the row’s path prevents non-consecutive rows from

attaching.

100

0

0

0

0

0

0

0

0

0

0

0 1

1

1

1

1

1

1

0 0

1

Figure 5.9: A zoomed view of adjacent attached rows of the counter described
in [DDF+08a] (top) and the equivalent rows in the weak counter (bottom).

Lemma 5.6.1. There exists a τ = 1 SAS of size O(b) that produces a 2b-bit

weak counter.

Proof. The counter is an O(1)-scaled version of the counter of Demaine et

al [DDF+08a]. They show that such an assembly is producible by a system of

size O(b).

Lemma 5.6.2. For any PCFG G deriving a 2b-bit weak counter, |G| = Ω(22b).

Proof. Define a minimal row spanner of row Ri to be a non-terminal sym-

bol N of G with production rule N → (B, (x1, y1))(C, (x2, y2)) such that the

polyomino derived by N contains a path between a pair of easternmost and

westernmost tiles of the row and the polyominoes derived by B and C do not.

We claim that each row (trivially) has at least one minimal row spanner and

each non-terminal of G is a minimal row spanner of at most one unique row.

114



First, suppose by contradiction that a non-terminal N is a minimal row

spanner for two distinct rows. Because N is connected and two non-adjacent

rows are only connected to each other via an intermediate row, N must be a

minimal row spanner for two adjacent rows Ri and Ri+1. Then the polyomi-

noes of B and C each contain tiles in both Ri and Ri+1, as otherwise either

C or B is a minimal row spanner for Ri or Ri+1.

Without loss of generality, assume B contains a tile at the end of Ri not

adjacent to Ri+1. But B also contains a tile in Ri+1 and (by definition) is

connected. So B contains a path between the east and west ends of row Ri,

and thus N is a not a minimal row spanner for ri. So N is a minimal row

spanner for at most one row.

Next, note that the necessarily-serpentine path between a pair of east-

ernmost and westernmost tiles of a row in a minimal row spanner uniquely

encodes the row it spans. So the row spanned by a minimal row spanner is

unique.

Because each non-terminal of G is a minimal row spanner for at most one

unique row, G must have at least 22b non-terminal symbols and total size

Ω(22b).

Theorem 5.6.3. The separation of PCFGs over τ = 1 SASs for single-label

polyominoes is Ω(n/(log log n)2).

Proof. By the previous two lemmas, there exists a SAS of size O(b) producing

a b-bit weak counter, and any PCFG deriving this shape has size Ω(22b).

The assembly itself has size n = Θ(22bb), as it consists of 22b rows, each

with b subassemblies of constant size. So the separation is Ω((n/b)/b) =

Ω(n/(log log n)2).

115



In [DDF+08a], the O(log log n)-sized SAS constructing a log n-bit binary

counter repeatedly doubles the length of each row (i.e. number of bits in

the counter) using O(1) mixings per doubling. Achieving such a technique

in a SSAS seems impossible, but a simpler construction producing a b-bit

counter with O(b) work can be done by using a unique set of O(1) glues for

each bit of the counter. In this case, mixing these reusable elements along

with a previously-constructed pair of first and last counter rows creates a

single mixing assembling the entire counter at once. Modifying the proof of

Theorem 5.6.3 to use this construction gives a similar separation for SSASs:

Corollary 5.6.4. The separation of PCFGs over τ = 1 SSASs for single-label

polyominoes is Ω(n/ log2 n).

5.6.2 Rectangles

For the weak counter construction, the lower bound in Lemma 5.6.2 depended

on the poor connectivity of the weak counter polyomino. This dependency

suggests that such strong separation ratios may only be achievable for special

classes of “weakly connected” or “serpentine” shapes. Restricting the set of

shapes to rectangles or squares while keeping an alphabet size of 1 gives separa-

tion of at most O(log n), as any rectangle of area n can be derived by a PCFG

of size O(log n). But what about rectangles with a constant-sized alphabet?

In this section we achieve surprisingly strong separation of PCFGs over SASs

and SSASs for rectangular constant-label polyominoes, nearly matching the

separation achieved for single-label general polyominoes.

The construction. The polyominoes constructed resemble binary counters

whose rows have been arranged in sequence horizontally, and we call them

b-bit end-to-end counters. Each row of the counter is assembled from tall, thin

116



macrotiles (called bars), each containing a color strip of orange, purple, or

green. The color strip is coated on its east and west faces with gray geometry

tiles that encode the bar’s location within the counter.

Figure 5.10: The rectangular polyomino used to show separation of PCFGs
over SASs when constrained to constant-label rectangular polyominoes. The
green and purple color strips denote 0 and 1 bits in the counter.

Each row of the counter has a sequence of green and purple display bars

encoding a binary representation of the row’s value and flanked by orange reset

bars (see Figure 5.11). An example for b = 2 bits can be seen in Figure 5.10.

Subrow bits

Row bits 1 1

1 2

1 1

2 3

Display Reset

1 2

3 0

1 bit 0 bit

Figure 5.11: The implementation of the vertical bars in row 2 (01b) of an
end-to-end counter.

Each bar has dimensions O(1)×3(log2 b+b+2), sufficient for encoding two

pieces of information specifying the location of the bar within the assembly.

The row bits specify which row the bar lies in (e.g. the 7th row). The subrow

bits specify where within the row the bar lies (e.g. the 4th bit). The subrow

value starts at 0 on the east side of a reset bar, and increments through the

display bars until reaching b + 1 on the west end of the next reset bar. Bars

of all three types with row bits ranging from 0 to 2b − 1 are produced.

117



Efficient assembly. The counter is constructed using a SAS of size O(b) in

two phases. First, sequences of O(b) mixings are used to construct five families

of bars: reset bars, 0-bit display bars resulting from a carry, 0-bit display bars

without a carry, 1-bit display bars resulting from a carry, 1-bit display bars

without a carry. The mixings produce five bins, each containing all of the bars

of a family. These five bins are then combined into a final bin where the bars

attach to form the Θ(2b) × Θ(b) rectangular assembly. The five families are

seen in Figure 5.12.

For all 0 ≤ j ≤ b, 0 ≤ m < 2b−j − 1, 0 ≤ p < 2j−1.

3j

3(b− j)

1 0 0 1

p p+ 1

0 0

p

m m+ 1 1’s 0’s

p p

1 1

m m+ 1

p p

1’s 0’s

p

j j j j3(log2 b+ 1)

3

j j j j

Display

Reset

i i+ 1

b 0

For all 0 ≤ i < 2b

3(b+ 1)

3(log2 b+ 1)

Figure 5.12: The decomposition of bars used assemble a b-bit end-to-end
counter.

Efficient O(b) assembly is achieved by careful use of the known approach

of non-deterministic assembly of single-bit assemblies as done in [DDF+08a].

Assemblies encoding possible input bit and carry bit value combinations for

each row bit and subrow bit are constructed and mixed together, and the

118



resulting products are every valid set of input and output bit strings, i.e.

every row of a binary counter assembly.

As a warmup, consider the assembly of all reset bars. For these bars, the

west subrow bits encode b and the east subrow bits encode 0. The row bits

encode a value i on the west side, and i+1 on the east side, for all i between 0

and 2b−1. Constructing all such bars using O(b) work is straightforward. For

each of the log2 b+ 1 subrow bits, create an assembly where the west and east

bits are 1 and 0 respectively, except for the most significant bit (bit log2 b+1),

where the west and east bits are both 0.

For the row bits we use the same technique as in [DDF+08a] and extended

in Lemma 5.5.2: create a constant-sized set of assemblies for each bit that

encode input and output value and carry bits. For bits 1 through b− 1 (zero-

indexed) create four assemblies corresponding to the four combinations of value

and carry bits, for bit 0 create two assemblies corresponding to value bits (the

carry bit is always 1), for bit b create three assemblies corresponding to all

combinations except both value and carry bits valued 1, and for bit b + 1

create a single assembly with both bits valued 0. Give each bit assembly a

unique south and north glue encoding its location within the bar and carry bit

value, and give all bit assemblies a common orange color strip. Mixing these

assemblies produces all reset bars, with subrow west and east values of b and

0, and row values i and i+ 1 for all i from 0 to 2b − 1.

In contrast to producing reset bars, producing display bars is more difficult.

The challenge is achieving the correct color strip relative to the subrow and

row values. Recall that the row value i locates the bar’s row and the subrow

value j locates the bar within this row. So the correct color strip for a bar is

green if the jth bit of i is 0, and purple if the jth bit of i is 1.

We produce four families of display bars, two for each value of the jth bit

119



of i. Each sub-family is produced by mixing a subrow assembly encoding j on

both east and west ends with three component assemblies of the row value:

the least significant bits (LSB) assembly encoding bits 1 through j−1 of i, the

most significant bits (MSB) assembly encoding bits j + 1 through b of i, and

the constant-sized jth bit assembly. This decomposition is seen in the bottom

half of Figure 5.12.

The four families correspond to the four input and carry bit values of

the jth bit. These values determine what collections of subassemblies should

appear in the other two components of the row value. For instance, if the

input and carry bit values are both 1, then the LSB assembly must have all

1’s on its west side (to set the jth carry bit to 1) and all 0’s on its east side.

Similarly, the MSB assembly must have some value p encoded on its west side

and the value p + 1 encoded on its east side, since the jth bit and and jth

carry bit were both 1, so the (j + 1)st carry bit is also 1.

Notice that each of the four families has b sub-families, one for each value

of j. Producing all sub-families of each family is possible in O(b) work by first

recursively producing a set of b bins containing successively larger sets of MSB

and LSB assemblies for the family. Then each sub-family can be produced

using O(1) amortized work, mixing one of b sets of LSB assembly sub-families,

one of b sets of MSB assemblies, and the jth bit assembly together. For

instance, one can produce the set of b sets of MSB assemblies encoding pairs

of values p and p+1 on bits b−1 through b, b−2 through b, etc. by producing

the set on bits k through b, then adding four assemblies to this bin (those

encoding possible pairs of inputs to the (k− 1)st bit) to produce a similar set

on bits k − 1 through b.

Lemma 5.6.5. There exists a τ = 1 SAS of size O(b) that produces a b-bit

end-to-end counter.

120



Proof. This follows from the description of the system. The five families of

bars can each be produced with O(b) work and the bars can be combined

together in a single mixing to produce the counter. So the system has total

size O(b).

Lemma 5.6.6. For any PCFG G deriving a b-bit end-to-end counter, |G| =

Ω(2b).

Proof. Let G be a PCFG deriving a b-bit end-to-end counter. Define a mini-

mal row spanner to be a non-terminal symbol N with production rule N →

(B, (x1, y1))(C, (x2, y2)) such that the polyomino derived by N (denoted pN)

horizontally spans the color strips of all bars in row Ri including the reset bar

at the end of the row, while the polyominoes derived by B and C (denoted

pB and pC) do not. Consider the bounding box D of these color strips (see

Figure 5.13).

pB

pC

D D

0 1 R

pN

Figure 5.13: A schematic of the proof that a non-terminal is a minimal row
spanner for at most one unique row. (Left) Since pB and pC can only touch
in D, their union non-terminal N must be a minimal row spanner for the row
in D. (Right) The row’s color strip sequence uniquely determines the row
spanned by N (01b).

Without loss of generality, pB intersects the west boundary of D but does

not reach the east boundary, while pC intersects the east boundary but does

not reach the west boundary, so any location at which pB and pC touch must

lie in D. Then any row spanned by pN and not spanned by pB or pC must lie

in D, since spanning it requires cells from both pB and pC . So pN is a minimal

row spanner for at most one row: row Ri.

121



Because the sequence of green and purple display bars found in D is distinct

and separated by display bars in other rows by orange reset bars, each minimal

row spanner spans a unique rowRi. Then since each non-terminal is a spanner

for at most one unique row, G must have 2b non-terminal symbols and |G| =

Ω(2b).

Theorem 5.6.7. The separation of PCFGs over τ = 1 SASs for constant-label

rectangles is Ω(n/ log3 n).

Proof. By construction, a b-bit end-to-end counter has dimensions Θ(2bb) ×

Θ(b). So n = Θ(2bb2) and b = Θ(log n). Then by the previous two lemmas,

the separation is Ω((n/b2)/b) = Ω(n/ log3 n).

We also note that a simple replacement of orange, green, and purple color

strips with distinct horizontal sequences of black/white color substrips yields

the same result but using fewer distinct labels.

5.6.3 Squares

The rectangular polyomino of the last section has exponential aspect ratio,

suggesting that this shape requires a large PCFG because it approximates a

patterned one-dimensional assemblies reminiscent of those in [DEIW12]. Cre-

ating a polyomino with better aspect ratio but significant separation is possible

by extending the polyomino’s labels vertically. For a square this approach gives

a separation of PCFGs over SASs of Ω(
√
n/ log n), non-trivial but far worse

than the rectangle.

The construction. In this section we describe a polyomino that is square

but contains an exponential number of distinct subpolyominoes such that each

subpolyomino has a distinct “minimal spanner”, using the language of the

122



proof of Lemma 5.6.6. These subpolyominoes use circular versions of the

vertical bars of the construction in Section 5.6.2 arranged concentrically rather

than adjacently. We call the polyomino a b-bit block counter, and an example

for b = 2 is seen in Figure 5.14.

Each block of the counter is a Θ(b2)×Θ(b2) square subpolyomino encoding

a sequence of b bits via a sequence of concentric rectangular rings of increasing

size. Each ring has a color loop encoding the value of a bit, or the start or end of

the bit sequence (the interior or exterior of the block, respectively). The color

loop actually has three subloops, with the center loop’s color (green, purple,

light blue, or dark blue in Fig. 5.14) indicating the bit value or sequence

information, and two surrounding loops (light or dark orange in Fig. 5.14)

indicating the interior and exterior sides of the loop.

Efficient assembly of blocks. Though each counter block is square, they

are constructed similarly to the end-to-end counter rows of Section 5.6.2 by

assembling the vertical bars of each ring together into horizontal stacks of

assemblies. Horizontal slabs are added to “fill in” the remaining portions of

each block.

The bars are identical to those found in Section 5.6.2 with three modifica-

tions (seen in Figure 5.15). First, each bar has additional height according to

the value of the subrow bits (8 tiles for every increment of the bits). Second,

each bar has four additional layers of tiles on the side (east or west) facing the

interior of the block, with color bits at the north and south ends of the side

encoding three values: 11b (if the center color subloop is purple, a 1-bit), 00b

(if the center color subloop is green, a 0-bit), or 01b (if the center color subloop

is dark blue, the end of the bit sequence). The additional layers are used to fill

in gaps between adjacent rings left by protruding geometry, and the bit values

123



Figure 5.14: The square polyomino used to show separation of PCFGs over
SASs when constrained to constant-label square polyominoes. The green and
purple color subloops denote 0 and 1 bits in the counter, while the light and
dark blue color subloops denote the start and end of the bit string. The light
and dark orange color subloops indicate the interior and exterior of the other
subloops.

are used to control the attachment of the horizontal slabs of each ring.

Third, the reset bars used in Section 5.6.2 are replaced with two kinds of

bars: start bars and end bars, seen in Figure 5.17. End bars form the outermost

rings of each block, and the start bars form the square cores of each block.

Both start and end bars “reset” the subrow counters, and the east end bars

increment the row value.

Recall that the vertical bars of the end-to-end counter in Section 5.6.2 were

constructed using O(b) total work by amortizing the constructing sub-families

of MSB and LSB assemblies for each subrow value j. We use the same trick

here for these assemblies as well as the new assemblies on the north and south

ends of each bar containing the color bits. In total there are twelve families

124



Subrow bits

Row bits

Color bits

Color bits

End StartDisplay Display End

0

21

1

1

0

1

3

1

2

1

0

1

1

1

2

Figure 5.15: The implementation of rings in each block of the block counter.

of vertical bar assemblies (four families of west display bars, four families of

east display bars, and two families each of start and end bars), and each is

assembled using O(b) work.

Finally, the horizontal slabs of each ring are constructed as six families,

each using O(b) work, as seen in Figure 5.18.

Efficient assembly of the counter. Once the families of vertical bars and

horizontal slabs are assembled into blocks, we are ready to arrange them into

a completed counter. Each row of the counter has
√

2b = 2b/2 blocks. So

assuming b is even, the b/2 least significant bits of the westernmost block of

each row are 0’s, and of the easternmost block are 1’s. Before mixing the

vertical bar families together, we “cap” the east end bar of each block at

125



3j

3(b− j)

1 0 0 1

p p+ 1

1’s 0’s

p p

1’s 0’s

j j j j3(log2 b+ 1)

3

For all 0 ≤ j ≤ b, 0 ≤ m < 2b−j − 1, 0 ≤ p < 2j−1.

8(b− j + 1)

8(b− j + 1)

0 0

p

m m+ 1

p

j j

1 1

m m+ 1

p p

j j

Figure 5.16: The decomposition of vertical display bars used to assemble blocks
in the b-bit block counter. Only the west bars are shown, with east bars
identical but color bits and color loops reflected.

the east end of a row by constructing a set of thin assemblies (right part of

Figure 5.19) and mixing them with the family of east end bars.

After this modification to the east end bar family, mixing all vertical bar

families results in 2b/2 assemblies, each forming most of a row of the block

counter. Mixing these assemblies with the families of horizontal slabs results

in a completed set of block counter rows, each containing 2b/2 square assem-

blies with dimensions Θ(b2) × Θ(b2), forming 2b/2 rectangles with dimensions

Θ(2b/2b2)×Θ(b2).

To arrange the rows vertically into a complete block counter, a vertically-

oriented version of the end-to-end counter of Section 5.6.2 with geometry in-

stead of color strips (left part of Fig. 5.19) is assembled and used as a “back-

bone” for the rows to attach into a combined assembly. This modified end-

126



8(b+ 1) + 2

10

i i

End

8(b+ 1) + 2

3(log2 b+ 1)

3(b+ 1)

b 0

i i+ 1 i i

b 0

3(log2 b+ b+ 1)

Start

For all 0 ≤ i < 2b

Figure 5.17: The decomposition of vertical start and end bars used to assemble
blocks in the b-bit block counter.

Display

End

16b+ 3(log2 b+ b+ 2)

16j + 3(log2 b+ b+ 2)

For all 0 ≤ j < b

Figure 5.18: The decomposition of horizontal slabs of each ring the b-bit block
counter.

to-end counter (see Figure 5.20) has subrow values from 0 to b/2, for the b/2

most significant bits of the row value of each block, and row values from 0

to 2b/2. Modified versions of reset bars with height (width in the horizontal

127



0 3(log2 b+ 1)

i

1’s1’s

i

0

. . .

Cap

0’s

i

0

End-to-end counter

For all 0 ≤ i < 2b/2

3(b/2 + 1)

3(b/2)

8(b+ 1) + 2

8(b+ 1) + 2

Figure 5.19: (Left) The interaction of a vertical end-to-end counter with the
westernmost block in each row. (Right) The cap assemblies built to attach to
the easternmost block in each row.

end-to-end counter) Θ(b2) are used to bridge across the geometry-less portions

of the west sides of the blocks, as well as the always-zero b/2 least significant

bits of the block’s row value and subrow log2 b bits.

This modified end-to-end counter can be assembled using O(b) work as

done for the original end-to-end counter, since the longer reset bars only add

O(log(b2)) = O(log b) work to the assembly process. After the vertical end-

to-end counter has been combined with the blocks to form a complete block

counter, a horizontal end-to-end counter is attached to the top of the assembly

to produce a square assembly.

Lemma 5.6.8. For even b, there exists a τ = 1 SAS of size O(b) that produces

a b-bit block counter.

Proof. The construction described builds families of vertical bars and horizon-

128



j

j

p

p+ 1

1

0

1’s

0’s

jp0m

0m+ 1 p j

j

j

j

j

p

p

p

p

0

1

1

1

1’s

0’s

m

m+ 1

3(b/2− j) 3 3j 3(log2 b+ 2)

Display

b

3(log2 b+ 2)

Reset

3(b/2 + 1)

0

i

i+ 1

3(b/2)

3(b/2)

19b+ 3 log2 b+ 23

For all 0 ≤ i < 2b/2

For all 0 ≤ j ≤ b, 0 ≤ m < 2b/2−j − 1, 0 ≤ p < 2j − 1

Figure 5.20: The decomposition of the bars of a vertically-oriented end-to-end
counter used to combine rows of blocks in a block counter.

tal slabs that are used to assemble each the rings forming all blocks in the

counter. There are a constant number of families, and each family can be

assembled using O(b) work. The vertical and horizontal end-to-end counters

can also be assembled using O(b) work each by Lemma 5.6.5. Then the b-bit

block counter can be assembled by a SAS of size O(b).

We now consider a lower bound for any PCFG G deriving the counter,

using a similar approach as Lemma 5.6.6.

Lemma 5.6.9. For any PCFG G deriving a b-bit block counter, |G| = Ω(2b).

Proof. Define a minimal block spanner as to be a non-terminal symbol N in

G with production rule N → (B, (x1, y1))(C, (x2, y2)) such that the polyomino

derived by N (denoted pN) contains a path from a gray cell outside the color

loop of the end ring of the counter to a gray cell inside the start color loop of

129



the counter, and the polyominoes derived by B and C (denoted pB and pC)

do not.

First we show that any minimal block spanner is a spanner for at most one

block. Assume by contradiction and that N is a minimal block spanner for

two blocks Bi and Bj and that pB contains a gray cell inside the start color

loop of Bi. Then B must be entirely contained in the color loop of the end ring

of Bi, as otherwise N is not a minimal block spanner for Bi. Similarly, C must

then be entirely contained in the color loop of the end ring of Bj. Since no pair

of color loops from distinct blocks have adjacent cells, pN is not a connected

polyomino and so G is not a valid PCFG.

[∅][start]

[start, 0]

[start]

[start, 0]

[start, 0, 1]

[start, 0]

[start, 0, 1]

[start, 0, 1, end]

Figure 5.21: A schematic of the proof that the block spanned by a minimal
row spanner is unique. Maintaining a stack while traversing a path from the
interior of the start ring to the exterior of the end ring uniquely determines
the block spanned by any minimal block spanner containing the path.

Next we show that the block spanned by N is unique, i.e. N cannot be

reused as a minimal spanner for multiple blocks. See Figure 5.21. Let N be

130



a minimal spanner for a block Bi and p be a path of cells in pN starting at a

gray cell contained in the start ring of Bi and ending at a gray cell outside the

end ring of Bi. Consider a traversal of p, maintaining a stack containing the

color loops crossed during the traversal. Crossing a color loop from interior

to exterior (a sequence of dark orange, then green, purple, or blue, then light

orange cells) adds the center subloop’s color to the stack, and traversing from

exterior to interior removes the topmost element of the stack.

We claim that the sequence of subloop colors found in the stack after

traversing an end ring from interior to exterior encodes a unique sequence of

display rings and thus a unique block. To see why, first consider that the color

loop of every ring forms a simple closed curve. Then the Jordan curve theorem

implies that entering or leaving each region of gray cells between adjacent color

loops requires traversing the color loop. Then by induction on the steps of p,

the stack contains the set of rings not containing the current location on p

in innermost to outermost order. So the stack state after exiting the exterior

of the end ring uniquely identifies the block containing p and N is a minimal

spanner for this unique block.

Since there are 2b distinct blocks in a b-bit block counter, any PCFG that

derives a counter has at least 2b non-terminal symbols and size Ω(2b).

Theorem 5.6.10. The separation of PCFGs over τ = 1 SASs for constant-

label squares is Ω(n/ log3 n).

Proof. By construction, a b-bit block counter has size Θ(2bb2) = n and so

b = Θ(log n). By the previous two lemmas, the separation is Ω((n/b2)/b) =

Ω(n/ log3 n).

Unlike the previous rectangle construction, it does not immediately follow

that a similar separation holds for 2-label squares. Finding a construction

131



that achieves nearly-linear separation but only uses two labels remains an

open problem.

5.6.4 Constant-glue constructions

Lemma 5.5.4 proved that any system S can be converted to a slightly larger

system (both in system size and scale) that simulates S. Applying this lemma

to the constructions of Section 5.6 yields identical results for constant-glue

systems:

Theorem 5.6.11. All results in Section 5.6 hold for systems with O(1) glues.

Proof. Lemma 5.5.4 describes how to convert any SAS or SSAS S = (T,G, τ,M)

into a macrotile version of the system S ′ that uses a constant number of glues,

has system size O(Σ(T )|T | + |S|), and scale factor O(log |G|). Additionally,

the construction achieves matching labels on all tiles of each macrotile, in-

cluding the glue assemblies. Because the labels are preserved, the polyomi-

noes produced by each macrotile system S ′ simulating an assembly system S

in Section 5.6 preserves the lower bounds for PCFGs (Lemmas 5.6.2, 5.6.6,

and 5.6.9) of each construction. Moreover, the number of labels in the poly-

omino is constant and so |S ′| = O(|T | + |S|) = O(|S|) and the system size

of each construction remains the same. Finally, the scale of the macrotiles is

O(log |G|) = O(log |S| = O(log b), so n is increased by a O(log2 b)-factor, but

since n was already exponential in b, it is still the case that b = Θ(log n) and

so the separation factors remain unchanged.

132



6

Conclusion

As this work has shown, there can be significant value in connecting self-

assembly models to more traditional computational models, such as context-

free grammars. Of course, this has been known since the Ph.D. thesis of Win-

free [Win98], in which a certain one-dimensional cellular automaton known

to be Turing-universal was shown to be simulated by a simple aTAM system,

demonstrating that the aTAM is computationally universal. Another exam-

ple is the Kolmogorov-complexity argument used by Rothemund and Win-

free [RW00], now a standard approach for tile assembly lower bounds. For

the most part, the connections between tile assembly and traditional mod-

els have been Turing-universality proofs of various tile assembly models, and

these proofs are now akin to NP-hardness proofs in the algorithms community.

Given the existence of so many universality proofs, one might expect that the

complexity of corresponding optimization and prediction problems for these

models are also solved as a byproduct of characterizing tile assembly models

as equivalent to Turing machines. This has turned out not to be the case.

A primary obstacle to converting universality results into complexity re-

sults on optimization problems is the lack of close correspondence between

133



Turing machines and tile systems. Ideally, a mapping between Turing ma-

chines and tile systems that preserves the relative sizes of corresponding ma-

chines and systems exists. Such a mapping seems unlikely, as the string world

of Turing machines appears to be a long way from the shape world of tile

assembly, and Turing machines lack the geometric aspect of so significant in

tile assembly (e.g. the constructions of Section 5.6).

Possibly as a result of the lack of closer correspondences between Turing

machine and tile assembly models, the complexity of optimization problems in

tile assembly (reviewed in Section 1.4) remain largely unresolved. For instance,

the problem of finding the smallest tile set uniquely assembling a patterned

square remains entirely open. The patterned self-assembly tile set synthesis

(PATS) problem is a highly constrained variant of this problem in which an

initial L-shaped assembly forming two edges of the square is given for free, and

all tiles must attach to the existing assembly on their south and west sides.

Even with these significant restrictions, the PATS problem was not known to

be NP-hard until 2012 [CP12]. One of the first optimization problems in tile

assembly studied was studied by Adleman et al. [ACG+02] in 2002: find the

smallest τ = 2 aTAM system uniquely assembling an assembly with a given

shape. They were able to show that this problem is NP-hard, but left the

problem of approximating the smallest tile set as an open problem and this

problem remains open still.

Even considering our work in isolation, a large number of open problems

remains, and these problems suggest two major lines of potential work. The

first line is to improve the approximability bounds of the smallest PCFG prob-

lem. This problem may be difficult enough to require interesting intermedi-

ate results to make progress, and solutions may involve polyomino problems

(such as packing), pattern recognition problems (such as identifying repeated

134



subpolyominoes), hierarchical compression problems (as found in the small-

est addition chain problem), or planar graph problems (such as partitioning,

hitting, or independence). The second line is to develop more positive results

and techniques for using bin parallelism in staged assembly. Achieving tighter

bounds on the complexity of the smallest SAS problem for unbounded glues,

or approximating the problem with a fixed glue count are both likely to be

difficult and require more understanding of how bin parallelism can be used

in the average case. More generally, it would be interesting to see how staging

could be applied to other models of molecular computing, such as chemical

reaction networks or membrane computing, and how other variations on the

concept of staging compare to staged tile assembly.

135



Bibliography

[ABD+10] Z. Abel, N. Benbernou, M. Damian, E. D. Demaine, M. L. De-
maine, R. Flatland, S. D. Kominers, and R. Schweller. Shape
replication through self-assembly and RNase enzymes. In Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2010.

[ACG+01] L. M. Adleman, Q. Cheng, A. Goel, M.-D. Huang, and H. Wasser-
man. Linear self-assemblies: Equilibria, entropy and convergence
rates. In B. Aulbach, S. N. Elaydi, and G. Ladas, editors, Proceed-
ings of Sixth International Conference on Difference Equations
and Applications, 2001.

[ACG+02] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M.
de Espanés, and P. W. K. Rothemund. Combinatorial optimiza-
tion problems in self-assembly. In Proceedings of Symposium on
Theory of Computing (STOC), 2002.

[ACG+05] G. Aggarwal, Q. Cheng, M. Goldwasser, M. Kao, P. de Espanes,
and R. Schweller. Complexities for generalized models of self-
assembly. SIAM Journal on Computing, 34(6):1493–1515, 2005.

[ACGH01] L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang. Running time
and program size for self-assembled squares. In Proceedings of
Symposium on Theory of Computing (STOC), 2001.

[Adl00] L. Adleman. Toward a mathematical theory of self-assembly (ex-
tended abstract). Technical Report 00-722, University of Southern
California, 2000.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and the hardness of approximation problems. Journal
of the ACM, 45(3):501–555, 1998.

[BCD+11] N. Bryans, E. Chiniforooshan, D. Doty, L. Kari, and S. Seki. The
power of nondeterminism in self-assembly. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
590–602, 2011.

136



[BJL+94] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Lin-
ear approximation of shortest superstrings. Journal of the ACM,
41(4):630–647, 1994.

[BK98] P. Berman and M. Karpinski. On some tighter approximability re-
sults, further improvements. Technical Report TR-98-065, ECCC,
1998.

[BLMZ10] N. Bansal, M. Lewenstein, B. Ma, and K. Zhang. On the longest
common rigid subsequence problem. Algorithmica, 56:270–280,
2010.

[BMRR06] G. Barequet, M. Moffie, A. Ribó, and G. Rote. Counting polyomi-
noes on twisted cylinders. INTEGERS: The Electronic Journal of
Combinatorial Number Theory, 6(A22), 2006.

[Bra39] A. Brauer. On addition chains. Bulletin of the American mathe-
matical Society, 45(10):736–739, 1939.

[BSRW09] R. D. Barish, R. Schulman, P. W. K. Rothemund, and E. Win-
free. An information-bearing seed for nucleating algorithmic
self-assembly. Proceedings of the National Academic of Sciences
(PNAS), 106(15):6054–6059, 2009.

[CD12] H.L. Chen and D. Doty. Parallelism and time in hierarchical
self-assembly. In ACM-SIAM Symposium on Discrete Algorithms,
2012.

[CDD+13] S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J.
Patitz, R. T. Schweller, S. M. Summers, and A. Winslow. Two
hands are better than one (up to constant factors): Self-assembly
in the 2HAM vs. aTAM. In Proceedings of International Sym-
posium on Theoretical Aspects of Computer Science (STACS),
volume 20 of LIPIcs, pages 172–184. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013.

[CDS11] H.-L. Chen, D. Doty, and S. Seki. Program size and tempera-
ture in self-assembly. In T. Asano, S. Nakano, Y. Okamato, and
O. Watanbe, editors, ISAAC 2011, volume 7074 of LNCS, pages
445–453. Springer Berlin Heidelberg, 2011.

[CFS11] M. Cook, Y. Fu, and R. Schweller. Temperature 1 self-assembly:
determinstic assembly in 3d and probabilistic assembly in 2d. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

[CGR12] H. Chandran, N. Gopalkrishnan, and J. Reif. Tile complexity
of linear assemblies. SIAM Journal on Computation, 41(4):1051–
1073, 2012.

137



[Cho56] N. Chomsky. Three models for the description of language. IRE
Transactions on Information Theory, 2(3):113–124, 1956.

[Cho59] N. Chomsky. On certain formal properties of grammars. Infor-
mation and Control, 9:137–167, 1959.

[CLL+02] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Rasala, A. Sahai, and a. shelat. Approximating the smallest
grammar: Kolmogorov complexity in natural models. In Proceed-
ings of the 34th Annual ACM Symposium on Theory of Comput-
ing, pages 792–801, New York, NY, USA, 2002. ACM.

[CLL+05] M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy,
M. Prabhakaran, A. Sahai, and a. shelat. The smallest grammar
problem. IEEE Transactions on Information Theory, 51(7):2554–
2576, 2005.

[CP09] A. Cherubini and M. Pradella. Picture languages: from wang
tiles to 2d grammars. In S. Bozapalidis and G. Rahonis, editors,
CAI 2009, volume 5725 of LNCS, pages 13–49. Springer Berlin
Heidelberg, 2009.

[CP12] E. Czeizler and A. Popa. Synthesizing minimal tile sets for com-
plex patterns in the framework of patterned DNA self-assembly.
In D. Stefanovic and A. Turberfield, editors, DNA 18, volume
7433 of LNCS, pages 58–72. Springer Berlin Heidelberg, 2012.

[CRP08] A. Cherubini, S. C. Reghizzi, and M. Pradella. Regional lan-
guages and tiling: a unifying approach to picture grammars. In
E. Ochmański and J. Tyszkiewicz, editors, MFCS 2008, volume
5162 of LNCS, pages 253–264. Springer Berlin Heidelberg, 2008.

[CS70] J. Cocke and J. T. Schwartz. Programming languages and their
compilers. Technical report, Courant Institute of Mathematical
Sciences, New York University, 1970.

[DDF+08a] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque,
E. Rafalin, R. T. Schweller, and D. L. Souvaine. Staged self-
assembly: nanomanufacture of arbitrary shapes with O(1) glues.
Natural Computing, 7(3):347–370, 2008.

[DDF+08b] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque,
E. Rafalin, R. T. Schweller, and D. L. Souvaine. Staged self-
assembly: nanomanufacture of arbitrary shapes with O(1) glues.
In M. H. Garzon and H. Yan, editors, DNA 13, volume 4848 of
LNCS, pages 1–14. Springer Berlin Heidelberg, 2008.

138



[DDF+12] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. J. Patitz, R. T.
Schweller, A. Winslow, and D. Woods. One tile to rule them all:
Simulating any turing machine, tile assembly system, or tiling
system with a single puzzle piece. Technical report, arXiv, 2012.

[DEIW11] E. D. Demaine, S. Eisenstat, M. Ishaque, and A. Winslow. One-
dimensional staged self-assembly. In L. Cardelli and W. Shih,
editors, DNA 17, volume 6937 of LNCS, pages 100–114. Springer
Berlin Heidelberg, 2011.

[DEIW12] E. D. Demaine, S. Eisenstat, M. Ishaque, and A. Winslow. One-
dimensional staged self-assembly. Natural Computing, 2012.

[DF92] M. P. Delest and J. M. Fedou. Attribute grammars and useful for
combinatorics. Theoretical Computer Science, 98:65–76, 1992.

[DLP+10] D. Doty, J. H. Lutz, M. J. Patitz, S. M. Summers, and D. Woods.
Intrinsic universality in self-assembly. In Proceedings of Inter-
national Symposium on Theoretical Aspects of Computer Science
(STACS), volume 5 of LIPIcs, pages 275–286. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2010.

[DLP+12] D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers,
and D. Woods. The tile assembly model is intrinsically universal.
In Proceedings of the 53rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 302–310, 2012.

[DLS81] P. Downey, B. Leong, and R. Sethi. Computing sequences with
addition chains. SIAM Journal on Computing, 10(3):638–646,
1981.

[Dot10] D. Doty. Randomized self-assembly for exact shapes. SIAM Jour-
nal on Computing, 39(8):3521–3552, 2010.

[Dot12] D. Doty. Theory of algorithmic self-assembly. Communications of
the ACM, 55(12):78–88, 2012.

[DPR+10] D. Doty, M. J. Patitz, D. Reishus, R. T. Schweller, and S. M.
Summers. Strong fault-tolerance for self-assembly with fuzzy tem-
perature. In Foundations of Computer Science (FOCS), pages
417–426, 2010.

[DPR+13] E. D. Demaine, M. J. Patitz, T. A. Rogers, R. T. Schweller, and
D. Woods. The two-handed tile assembly model is not intrinsi-
cally universal. In F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska,
and D. Peleg, editors, Automata, Languages and Programming
(ICALP), volume 7965 of LNCS, pages 400–412. Springer Berlin
Heidelberg, 2013.

139



[DR04] E. Duchi and S. Rinaldi. An object grammar for column-convex
polyominoes. Annals of Combinatorics, 8(1):27–36, 2004.

[Erd32] P. Erdös. Beweis eines satzes von tschebyschef. Acta Litterarum
ac Scientiarum Szeged, 5:194–198, 1932.

[ET41] P. Erdös and P. Turán. On a problem of Sidon in additive number
theory, and on some related problems. Journal of the London
Mathematics Society, 16:212–216, 1941.

[Fed68] J. Feder. Languages of encoded line patterns. Information and
Control, 13(3):230–244, 1968.

[FPSS12] B. Fu, M. J. Patitz, R. T. Schweller, and B. Sheline. Self-assembly
with geometric tiles. In A. Czumaj, K. Mehlhorn, A. Pitts, and
R. Wattenhofer, editors, Automata, Languages and Programming
(ICALP), volume 7391 of LNCS, pages 714–725. Springer Berlin
Heidelberg, 2012.

[Fre61] H. Freeman. On the encoding of arbitrary geometric configura-
tions. IRE Transactions on Electronic Computers, EC-10(2):260–
268, 1961.

[FT98] M. Farach and M. Thorup. String matching in Lempel-Ziv com-
pressed strings. Algorithmica, 20(4):388–404, 1998.

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel
computation: P -completeness theory. Oxford University Press,
1995.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and
Co., 1979.

[GK97] R. Giegerich and S. Kurtz. From Ukkonen to McCreight to
Weiner: a unifying view of linear-time suffix tree construction.
Algorithmica, 19:331–353, 1997.

[GMA80] J. Gallant, D. Maier, and J. Astorer. On finding minimal length
superstrings. Journal of Computer and System Sciences, 20(1):50–
58, 1980.

[GR97] D. Giammarresi and A. Restivo. Two-dimensional languages. In
Handbook of Formal Languages, pages 215–267. Springer, New
York, 3 edition, 1997.

[HRA10] M. Hayashida, P. Ruan, and T. Akutsu. A quadrisection algorithm
for grammar-based image compression. In T. h. Kim, Y. h. Lee,
B.-H. Kang, and D. Ślȩzak, editors, FGIT 2010, volume 6485 of
LNCS, pages 234–248. Springer Berlin Heidelberg, 2010.

140



[Hui92] L. C. K. Hui. Color set size problem with applications to string
matching. In A. Apostolico, M. Crochemore, Z. Galil, and U. Man-
ber, editors, CPM 1992, volume 664 of LNCS, pages 230–243.
Springer Berlin Heidelberg, 1992.

[Jeż13] A. Jeż. Approximation of grammar-based compression via recom-
pression. Technical report, arXiv, 2013.

[JL95] T. Jiang and M. Li. On the approximation of shortest common
supersequences and longest common subsequences. SIAM Journal
on Computing, 24(5):1122–1139, 1995.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Com-
putations, pages 85–104. Plenum, 1972.

[Kas65] T. Kasami. An efficient recognition and syntax analysis algorithm
for context-free languages. Technical Report AFCRL-65-758, Air
Force Cambridge Research Laboratory, 1965.

[KKS13] L. Kari, S. Kopecki, and S. Seki. 3-color bounded patterned self-
assembly. Technical report, arXiv, 2013.

[KR73] D. A. Klarner and R. L. Rivest. A procedure for improving the
upper bound for the number of n-ominoes. Canadian Journal of
Mathematics, 25:585–602, 1973.

[KS06] M. Y. Kao and R. Schweller. Reducing tile complexity for
self-assembly through temperature programming. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 571–580, 2006.

[KS08] M. Y. Kao and R. Schweller. Randomized self-assembly for ap-
proximate shapes. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, Au-
tomata, Languages and Programming (ICALP), volume 5125 of
LNCS, pages 370–384. Springer Berlin Heidelberg, 2008.

[KS12] M. Karpinski and R. Schmied. Improved inapproximability re-
sults for the shortest superstring and related problems. Technical
Report 85331-CS, University of Bonn, 2012.

[KSX12] L. Kari, S. Seki, and Z. Xu. Triangular and hexagonal tile
self-assembly systems. In M. J. Dinneen, B. Khoussainov, and
A. Nies, editors, WTCS 2012, volume 7160 of LNCS, pages 357–
375. Springer Berlin Heidelberg, 2012.

141



[Las02] E. Lehman and a. shelat. Approximation algorithms for grammar-
based compression. In Proceedings of the 20th Annual Symposium
on Discrete Algorithms (SODA), pages 205–212, 2002.

[Leh02] E. Lehman. Approximation Algorithms for Grammar-Based Data
Compression. PhD thesis, MIT, 2002.

[LL09] M. Lange and H. Leiß. To CNF or not to CNF? an efficient yet
presentable version of the CYK algorithm. Informatica Didactica,
8, 2009.

[LNS92] P. Laroche, M. Nivat, and A. Saoudi. Context-sensitivity of puzzle
grammars. In A. Nakamura, M. Nivat, A. Saoudi, P. Wang, and
I. Katsushi, editors, Parallel Image Analysis, volume 654 of LNCS,
pages 195–212. Springer Berlin Heidelberg, 1992.

[Luh09] C. Luhrs. Polyomino-safe DNA self-assembly via block replace-
ment. In A. Goel, F. C. Simmel, and P. Sosik, editors, DNA 14,
volume 5347 of LNCS, pages 112–126. Springer Berlin Heidelberg,
2009.

[Luh10] C. Luhrs. Polyomino-safe DNA self-assembly via block replace-
ment. Natural Computing, 9(1):97–109, 2010.

[ML08] X. Ma and F. Lombardi. Synthesis of tile sets for dna self-
assembly. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 27(5):963–967, 2008.

[MMS06] S. Maruyama, H. Miyagawa, and H. Sakamoto. Improving time
and space complexity for compressed pattern matching. In
T. Asano, editor, ISAAC 2006, volume 4288 of LNCS, pages 484–
493. Springer Berlin Heidelberg, 2006.

[MR71] D. L. Milgram and A. Rosenfeld. Array automata and array gram-
mars. IFIP Congress, booklet TA-2:166–173, 1971.

[MRW82] H. A. Mauerer, G. Rozenberg, and E. Welzl. Using string lan-
guages to describe picture languages. Information and Control,
54:155–182, 1982.

[MYS83] K. Morita, Y. Yamamoto, and K. Sugata. The complexity of
some decision problems about two-dimensional array grammars.
Information Sciences, 30:241–292, 1983.

[MZ05] B. Ma and K. Zhang. On the longest common rigid subsequence
problem. In A. Apostolico, M. Crochemore, and K. Park, editors,
CPM 2005, volume 3537 of LNCS, pages 11–20. Springer Berlin
Heidelberg, 2005.

142



[Oll08] N. Ollinger. Universalities in cellular automata: a (short) survey.
In B. Durand, editor, Symposium on Cellular Automata Journées
Automates Cellular (JAC 2008), pages 102–118. MCCME Pub-
lishing House, 2008.

[Pat12] M. J. Patitz. An introduction to tile-based self-assembly. In
J. Durand-Lose and N. Jonoska, editors, UCNC 2012, volume
7445 of LNCS, pages 34–62. Springer Berlin Heidelberg, 2012.

[PLS12] J. Padilla, W. Liu, and N. C. Seeman. Hierarchical self assembly
of patterns from the Robinson tilings: DNA tile design in an en-
hanced tile assembly model. Natural Computing, 11(2):323–328,
2012.

[Ram19] S. Ramanujan. A proof of Bertrand’s postulate. Journal of the
Indian Mathematical Society, 11:181–182, 1919.

[Rot01] P. W. K. Rothemund. Using lateral capillary forces to compute
by self-assembly. PNAS, 97(3):984–989, 2001.

[RP05] S. C. Reghizzi and M. Pradella. Tile rewriting grammars and
picture languages. Theoretical Computer Science, 340(2):257–272,
2005.

[RW00] P. W. K. Rothemund and E. Winfree. The program-size complex-
ity of self-assembled squares. In Proceedings of ACM Symposium
on Theory of Computing (STOC), pages 459–468, 2000.

[Ryt02] W. Rytter. Application of Lempel-Ziv factorization to the ap-
proximation of grammar-based compression. In A. Apostolico
and M. Takeda, editors, Combinatorial Pattern Matching, volume
2373 of LNCS, pages 20–31. Springer Berlin Heidelberg, 2002.

[Sak05] H. Sakamoto. A fully linear-time approximation algorithm for
grammar-based compression. Journal of Discrete Algorithms, 3(2–
4):416–430, 2005.

[Sch37] A. Scholz. Aufgabe 253. Jahresbericht der deutchen
Mathematiker-Vereinigung, 47:41–42, 1937.

[Sch98] R. Schulman. The self-replication and evolution of DNA crystals.
PhD thesis, Caltech, 1998.

[Sch13] R. Schweller. personal communication, 2013.

[Sek13] S. Seki. Combinatorial optimization in pattern assembly. In
G. Mauri, A. Dennunzio, L. Manzoni, and A. E. Porreca, edi-
tors, UCNC 2013, volume 7956 of LNCS, pages 220–231. Springer
Berlin Heidelberg, 2013.

143



[Sid32] S. Sidon. Ein satz äuber trigonomietrische polynome und siene
anwendungen in der theorie der Fourier-Reihen. Mathematische
Annalen, 106:536–539, 1932.

[SKS04] H. Sakamoto, T. Kida, and S. Shimozono. A space-saving linear-
time algorithm for grammar-based compression. In A. Apostolico
and M. Melucci, editors, SPIRE 2004, volume 3246 of LNCS,
pages 218–229. Springer Berlin Heidelberg, 2004.

[SSK72] G. Siromoney, R. Siromoney, and K. Krithivasan. Abstract fam-
ilies of matrices and picture languages. Computer Graphics and
Image Processing, 1(3):284–309, 1972.

[Sum12] S. M. Summers. Reducing tile complexity for the self-assembly of
scaled shapes through temperature programming. Algorithmica,
63(1–2):117–136, 2012.

[SW85] I. Sudborough and E. Welzl. Complexity and decidability for chain
code picture languages. Theoretical Computer Science, 36:173–
202, 1985.

[SW05] R. Schulman and E. Winfree. Programmable control of nucle-
ation for algorithmic self-assembly (extended abstract). In C. Fer-
retti, G. Mauri, and C. Zandron, editors, DNA 10, volume 3384
of LNCS, pages 319–328. Springer Berlin Heidelberg, 2005.

[Swe94] Z. Sweedyk. A 1
2
-approximation algorithm for shortest super-

string. SIAM Journal on Computing, 29(3):954–986, 1994.

[Vas05] V. Vassilevska. Explicit inapproximability bounds for the shortest
superstring problem. In J. Jȩdrzejowicz and A. Szepietowski, edi-
tors, MFCS 2005, volume 3618 of LNCS, pages 793–800. Springer
Berlin Heidelberg, 2005.

[Wei73] P. Weiner. Linear pattern matching algorithms. In Proceedings of
the IEEE 14th Symposium on Switching and Automata Theory,
pages 1–11, 1973.

[Win98] E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, Cal-
tech, 1998.

[Win12] A. Winslow. Inapproximability of the smallest superpolyomino
problem. In Proceedings of the 22nd Annual Fall Workshop on
Computational Geometry (FWCG), 2012.

[Win13] A. Winslow. Staged self-assembly and polyomino context-free
grammars. In D. Soloveichik and B. Yurke, editors, DNA 19,
2013.

144



[Woo13] D. Woods. Intrinsic universality and the computational power
of self-assembly. In T. Neary and M. Cook, editors, MCU 2013,
volume 128 of EPTCS, pages 16–22. Open Publishing Association,
2013.

[Yao76] A. C.-C. Yao. On the evaluation of powers. SIAM Journal on
Computing, 5(1):100–103, 1976.

[You67] D. H. Younger. Recognition and parsing of context-free languages
in time n3. Information and Control, 10(2):372–375, 1967.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory,
23(3):337–343, 1977.

[Zuc07] D. Zuckerman. Linear degree extractors and the inapproximabil-
ity of max clique and chromatic number. Theory of Computing,
3:103–128, 2007.

145


