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Abstract

We prove a conjecture of Aanjaneya, Bishnu, and Pal that the maximum number
of diffuse reflections needed for a point light source to illuminate the interior of a
simple polygon with n walls is bn/2c − 1. Light reflecting diffusely leaves a surface
in all directions, rather than at an identical angle as with specular reflections.
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1 Introduction

For a light source placed in a polygonal room with mirror walls, light rays
that reach a wall at angle θ (with respect to the normal of the wall’s surface)
also leave at angle θ. In other words, for these specular reflections the angle
of incidence equals the angle of reflection (see Fig. 1).

1 Email: barequet@cs.technion.ac.il
2 Email: cannon@maths.ox.ac.uk
3 Email: {ef,hescott,dls,awinslow}@cs.tufts.edu
4 Email: cdtoth@ucalgary.ca



θ θ

specular diffuse

Fig. 1. Two types of reflections. Specular reflection occurs on mirrored surfaces
(left) and diffuse reflection occurs on matte surfaces (right).

Klee asked whether the interior of any room defined by a simple polygon
with mirrored walls is completely illuminated by placing a single point light
anywhere in the interior [7]. Tokarsky [9] gave a negative answer to this
question by constructing simple polygons and pairs of points (s, t), such that
there is no path from s to t with specular reflections off the walls of the room.
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Fig. 2. The regions of the polygon illuminated by a light source s after 0, 1, 2, and
3 diffuse reflections.

On the other hand, if the walls of the polygonal room P reflect light dif-
fusely in all directions, then it is easy to see that every point in P is illuminated
after at most n diffuse reflections (Fig. 2). For diffuse reflections, we assume
that the vertices of P absorb light, and that light does not propagate along
the edges of P . A diffuse reflection path is a polygonal path γ contained in P
such that every interior vertex of γ lies in the relative interior of some edge of
P , and the relative interior of every edge of γ is in the interior of P .

Denote by Vk(s) ⊆ P the part of the polygon illuminated by a light source
s after at most k diffuse reflections. Formally, Vk(s) is the set of points t ∈ P
such that there is a diffuse reflection path from s to t with at most k interior
vertices. Hence, V0(s) is the visibility region of point s within the polygon
P and so is a simply connected region with O(n) edges. Aronov et al. [3]
showed that V1(s) is simply connected with at most O(n2) edges, and this
bound cannot be improved. Brahma et al. [5] constructed simple polygons
and a source s such that V2(s) is not simply connected, and showed that V3(s)
can have as many as Ω(n) holes. Extending the work of [3], Aronov et al. [2,4]
and Prasad et al. [8] bounded the complexity of Vk(s) at O(n9) and Ω(n2) for



all k. It remains an open problem to close the gap between these bounds for
k ≥ 2.

Finding a shortest diffuse illumination path between two given points in
a simple polygon by brute force is possible in O(n10) time using the result of
Aronov et al. [4]. Ghosh et al. [6] presented a 3-approximation in a much-
improved O(n2) time, and their approximation applies even if the polygon P
has holes.
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Fig. 3. Left: An orthogonal spiral polygon with n = 20 vertices [1], where every
diffuse reflection path between s and t has at least dn/2e − 2 = 8 turns. Right: A
zig-zag polygon with n = 16 vertices where every diffuse reflection path between s
and t has at least bn/2c − 1 = 7 reflections.

Results. We determine the maximum length of a diffuse illumination path
in a simple polygon in n vertices. Let D(n) be the smallest integer k ∈ N0

such that for any simple polygon P with n vertices and any two interior
points s, t ∈ int(P ), there is a diffuse illumination path between s and t with
at most k interior vertices (i.e., at most k reflections). Aanjaneya et al. [1]
conjectured that D(n) ≤ dn/2e − 1 and construct an example which yields
D(n) ≥ bn/2c − 2; see Fig. 3 (left). The zig-zag polygon in Figure 3 (right)
shows that D(n) ≥ bn/2c − 1. Here we prove that D(n) = bn/2c − 1.

Theorem 1.1 Let P be a simple polygon with n ≥ 3 vertices. We have
int(P ) ⊆ Vk(s) for every s ∈ int(P ) and k ≥ bn/2c − 1.

Corollary 1.2 Let P be a simple polygon with n ≥ 3 vertices. Between any
two points s, t ∈ int(P ), there exists a diffuse reflection path with at most
bn/2c − 1 reflections.

Definitions. For a planar set S ⊆ R2, let int(S) and cl(S) denote the set of
interior points of S and the closure of S, respectively. The boundary of S,
denoted ∂S, is ∂S = cl(S) \ int(S). Let P be a simple polygon with n ≥ 3
vertices. A chord of P is a line segment ab, such that a, b ∈ ∂P and the relative
interior of ab lies in int(P ). The visibility polygon of a chord ab, V0(ab), is the
set of points visible from a point in ab (i.e., the weak visibility polygon of ab).



A set S ⊆ P weakly covers an edge e of P if S intersects the relative interior
of e.

2 A Set of Regions Rk

Let P be a simple polygon with n vertices, and let s ∈ int(P ). Let us assume
that the vertices of P and s are in general position, that is, there are only
trivial algebraic relations among s and the vertices of P . (This assumption
simplifies the presentation, but it is not essential for the proof.)

Instead of tackling Vk(s) directly, we define an infinite sequence of simply-
connected regions R0 ⊆ R1 ⊆ R2 ⊆ . . ., such that R0 = V0(s) and Rk ⊆ Vk(s)
for all k ∈ N, and then show that int(P ) ⊆ Rbn/2c−1. For every k ∈ N0, the
region Rk will have the following structural properties.

(i) The boundary of Rk is a simple polygon, in which each edge is either a
chord of P (called a window) or part of an edge of P . (The boundary of
Rk is not necessarily part of Rk.)

(ii) The windows of Rk are pairwise disjoint.
(iii) For each window ab, one endpoint, say a, is a reflex vertex of P , and the

other endpoint b lies in the relative interior of some edge eab of P .
(iv) For each window ab, we have b 6∈ Rk, but in any neighborhood of b, some

point on the edge eab is in Rk.

If int(P ) 6⊆ Rk, then Rk has at least one window. A window ab of Rk is
saturated if one endpoint of every chord of P crossing ab is in Rk; otherwise,
it is unsaturated. Also, every window of P decomposes P into two simple
polygons sharing the side ab. Denote by Uab the polygon that does not contain
Rk.

For each window ab, we define a set Wab as follows. If ab is saturated, then
let Wab = V0(ab) ∩ Uab. Otherwise, let c ∈ Rk ∩ ∂P be a point close to b on
eab such that no line determined by two vertices of P separates b and c; and
then let Wab = V0(c) ∩ Uab. Let Rk+1 be the union of cl(Rk) and the sets Wab

for all windows ab of Rk.

In the full version of the paper, we prove that Rk ⊆ Vk for all k ∈ N0.

3 Counting Weakly Covered Edges in Rk

The proof of Theorem 1.1 is based on counting the edges in the polygon weakly
covered by Rk, which we denote µk. It is not difficulty to show that R0 = V0



weakly covers at least 3 edges (µ0 ≥ 3). We show that the invariant

µk ≥ min(2k + 3, n). (1)

is maintained for all k ∈ N0, which immediately implies Theorem 1.1.
Invariant (1) is clearly maintained when the number of edges weakly covered
by Rk increases by two or more. Unfortunately, this is not always the case: in
some instances, Rk+1 weakly covers only one more edge than Rk (i.e., µk+1 =
µk + 1). We introduce the notion of “critical” cases when µk = 2k+ 3 and by
careful analysis show that for every critical Rk, Rk+1 weakly covers at least
two new edges of P , maintaining invariant (1).

Let λk denote the number of windows of Rk. Since the regions Rk increase
monotonically (i.e., Rk−1 ⊆ Rk, k ∈ N0), we have µk ≤ µk+1 for all k ∈ N0. In
the full version of the paper we show that µ0 ≥ 3 and

µk+1 ≥ µk + λk for all k ∈ N0. (2)

A region Rk is called critical if µk = 2k + 3 and µk < n. From (2), it is
enough to show that if Rk is critical, then Rk+1 satisfies (1). Invariant (1) is
maintained when µk+1 = µk + 2. Invariant (2) implies that µk+1 ≥ µk + 1
while µk < n, since if µk < n then Rk 6= int(P ). Hence, invariant (1) fails to
hold for Rk+1 only if Rk is critical and µk+1 = µk + 1. For every critical region
Rk, we establish one of the following two conditions:

(A) All windows of Rk are saturated;
(B) λk ≥ 2, but Rk has an unsaturated window.

Lemma 3.1 Let Rh, . . . , Rk be a maximal sequence of critical regions. Then,
condition (A) or (B) applies for each i = h, . . . , k.

Lemma 3.2 Invariant (1) holds for all k ∈ N0.

Proof. It is enough to show that whenever Rk is critical, the region Rk+1

satisfies (1). Consider a maximal sequence Rh, . . . , Rk of critical regions such
that µk+1 < n. By Lemma 3.1, we have λk ≥ 2 or all windows of Rk are
saturated. If λk ≥ 2, then µk+1 ≥ µk + 2 by (2). If all windows of Rk are
saturated, then Rk+1 weakly covers at least one new edge of P behind each
window of Rk, and at least two edges behind one of the windows (see the full
version of the paper for details). Therefore, µk+1 ≥ µk +λk +1. In both cases,
we have µk+1 ≥ µk + 2 ≥ (2k + 3) + 2 = 2(k + 1) + 3, and Rk+1 satisfies (1),
as required. 2

Theorem 1.1 Let P be a simple polygon with n ≥ 3 vertices. We have



int(P ) ⊆ Vk(s) for every s ∈ int(P ) and k ≥ bn/2c − 1.

Proof. If Rbn/2c−1 has a window ab, then by property (iii) there is an edge
ad not weakly covered by Rbn/2c−1, contradicting invariant (1). Therefore
Rbn/2c−1 has no windows, and int(P ) ⊆ Rbn/2c−1, as claimed. 2
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