CSCI 3333 Practice Quiz GRPH1

- The actual quiz consists of one question and a 10-minute duration.
- The actual quiz question may or may not be one of the questions here.

Problem 1. Complete the following implementation of a function that returns whether the undirected graph with vertex set V contains a triangle: a cycle of length 3.

```cpp
bool triangle(vector<Node*> &V)
{
    for (Node* v : V)
    {
        for (Node* vn : _____->neighs)
        {
            for (Node* vnn : _____->neighs)
            {
                for (Node* vnnn : _____->neighs)
                {
                    if (vnnn == _____ )
                        return _____;
                }
            }
        }
    }
    return _____;
}
```

Fill in the blanks about the function `triangle`:

The worst-case running time is $\Theta(_____________\text{function of } |V|, |E|)$.

The best-case running time is $\Theta(_____________\text{function of } |V|, |E|)$.

If every node has less than 6 neighbors, then the worst-case running time is $O(_____________\text{function of } |V|)$.

If every node has at least $\sqrt{|V|}$ neighbors, then the worst-case running time is $\Omega(_____________\text{function of } |V|)$.
Problem 2. Complete the labeling of the nodes in the graphs below according to the order they are “visited” (removed from the queue) during the search specified in the caption.

Figure 1: Breadth-first search ordering (Problem 2).

Figure 2: Depth-first search ordering (Problem 2).
Problem 3. Draw the remaining edges of the weighted connected undirected graph below so that it has the following properties:

- All edges have positive integer weights.
- Any BFS from v_1 reaches v_6 last.
- $d(v_1, v_4) = d(v_1, v_5) = 4$.

Figure 3: The (partially drawn) graph for Problem 3.