Problem 1. Fill in the blanks with answers based on the graph in Figure 1.

The maximum flow from v_1 to v_6 is ________.

The maximum flow from v_2 to v_5 is ________.

The removal of the edge (________, ________) cause the maximum flow from v_3 to v_4 to become 5.

The two distinct nodes with maximum flow between them are ________ and ________.
Problem 2. A graph is 2-connected provided it remains connected after removing any edge. Complete the following implementation of a function that returns whether a graph is 2-connected. The function `max_flow` assumes the weight/capacity of every edge in the graph `V` is 1.

```cpp
bool two_connected(vector<Node*> &V)
{
    if (V.size() <= 2)
        return true;

    Node* s = V[0];
    for (Node* t : V)
    {
        // Uses Edmonds-Karp
        int f = max_flow(V, s, t);

        if (f < 1)
            return false;
    }
    return true;
}
```

Fill in the blank: the worst-case running time of `two_connected` is \(\Theta(\text{function of } |V|, |E|) \).
Problem 3. Complete the labelings of the edges to obtain valid flows from s to t.

![Figure 2: A graph for Problem 3.](image)

![Figure 3: A graph for Problem 3.](image)