CSCI 3333 Practice Midterm #3

- Do not start until instructed to do so.
- Write your UTRGV ID only in the space provided at the top of this page.
- The midterm is closed - no books, notes, computers, cell phones, calculators, etc.
- The time allotted for the exam is 70 minutes.
- There are 7 questions worth 28 points total; each problem is worth 4 points.
- *These are not the actual midterm questions.*

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1. Complete the following implementation of a function that returns whether the undirected graph with vertex set V contains a triangle: a cycle of length 3.

```cpp
bool triangle(vector<Node*> &V)
{
    for (Node* v : V)
        for (Node* vn : _____->neighs)
            for (Node* vnn : _____->neighs)
                for (Node* vnnn : _____->neighs)
                    if (vnnn == _____)
                        return _____;
    return _____;
}
```

Fill in the blanks about the function `triangle`:

The worst-case running time is $\Theta(\text{function of } |V|, |E|)$.

The best-case running time is $\Theta(\text{function of } |V|, |E|)$.

If every node has less than 6 neighbors, then the worst-case running time is $O(\text{function of } |V|)$.

If every node has at least $\sqrt{|V|}$ neighbors, then the worst-case running time is $\Omega(\text{function of } |V|)$.
Problem 2. Complete the following implementation of the Bellman-Ford algorithm. `bellman_ford` should return whether the graph contains a negative-weight cycle.

```cpp
bool bellman_ford(vector<Node*> &V, Node* source, map<Node*, int> &D)
{
    D.clear();

    for (Node* v : V)
        ______[v] = numeric_limits<int>::infinity();

    D[_____] = 0;

    for (int i = 1; i < _____ .size(); ++i)
    {
        for (Node* v : V)
        {
            for (Node* nv : v->neighs)
                if (D[_____] + v->weights[nv] _____ D[nv])
                    D[nv] = D[_____] + v->weights[nv];
        }

        for (Node* v : V)
        {
            for (Node* nv : v->neighs)
                if (_____ + _____ < D[nv])
                    return _____;
        }
    }

    return false;
}
```
Problem 3. Determine the truth of the following statements about shortest-path algorithms.

If $|E| = \Theta(|V|)$, the worst-case running time of BFS is $O(|E|)$ □ True □ False

If $|E| = \Theta(|V|^2)$, the worst-case running time of Dijkstra’s is $\Theta(|V|^2 \log |V|)$ □ True □ False

Bellman-Ford is correct for disconnected input graphs. □ True □ False

For graphs with $|V| = \Theta(|E|)$, Dijkstra’s has lower asymptotic worst-case running time than Bellman-Ford. □ True □ False

Problem 4. Fill in the blanks with answers based on the graph in Figure 1.

The maximum flow from v_1 to v_6 is ________.

The maximum flow from v_2 to v_5 is ________.

The removal of the edge (________, ________) cause the maximum flow from v_3 to v_4 to become 5.

The two distinct nodes with maximum flow between them are ________ and ________.

Figure 1: The graph for Problem 4.
Problem 5. Draw the remaining edges of the weighted connected undirected graph below so that it has the following properties:

- All edges have positive integer weights.
- Any BFS from v_1 reaches v_6 last.
- $d(v_1, v_4) = d(v_1, v_5) = 4$.

![Graph](image)

Figure 2: The (partially drawn) graph for Problem 5.
Problem 6. Fill in the blanks with answers based on the graphs in Figure 3.

The number of edges of an MST is ________ and the weight of an MST is ________.

There are ________ distinct minimum spanning trees.

Removing the edge (________, _________) increases the weight of an MST.

Figure 3: The graph for Problem 6.
Problem 7. Complete the labeling of the nodes in the graphs below according to the order they are "visited" (removed from the queue) during the search specified in the caption.

Figure 4: Breadth-first search ordering (Problem 7).

Figure 5: Depth-first search ordering (Problem 7).

Figure 6: Breadth-first search ordering (Problem 7).