CSCI 3333 Homework: Search
(with Solutions)

1 Recurrence Relations

Problem 1. Give a recurrence relation describing the running time of the following C++ function:

```cpp
int fib(int n)
{
    if (n < 2)
        return 1;
    return fib(n-1) + fib(n-2);
}
```

Solution 1. \(T(n) = T(n - 1) + T(n - 2) + c, T(0) = T(1) = d \) where \(c, d \in \mathbb{R}^+ \).

Problem 2. Give a recurrence relation describing the running time of the following C++ function:

```cpp
int factorial(int n)
{
    if (n < 2)
        return 1;
    return n * factorial(n-1);
}
```

Solution 2. \(T(n) = T(n - 1) + c, T(1) = d \) where \(c, d \in \mathbb{R}^+ \).

2 Ternary Search

Binary search is actually just one algorithm in a family of searching algorithms called binary, ternary, quaternary, etc. search. Each \(k \)-ary search algorithm partitions the input array into \(k \) equal-sized parts, and does \(k - 1 \) comparisons to decide which of these parts the search should recurse into.

Problem 3. Describe the ternary search algorithm (can use words, pseudocode, etc. – don’t worry about precise indices, types, etc.). For convenience, call the searched-for element \(x \) and the input array \(A \).

Solution 3. If \(A \) has length at most 10, search through \(A \) for \(x \) and return if found. Compare \(x \) to the elements of \(A \) one-third and two-thirds of the way through \(A \); if \(x \) is equal to either one return true. If \(x \) is less than the one-third element, recursively search in the first third of \(A \). If \(x \) is greater than the two-thirds element, recursively search in the last third of \(A \). Otherwise, recursively search in the middle third of \(A \).
Problem 4. Implement ternary search as a C++ function with header `bool search(int x, int* A, int n)`, where `x` is the item being searched for, `A` is the array to search in, and `n` is the length of the array.

Solution 4. `bool search(int x, int* A, int n)`
{
 if (n < 10)
 {
 for (int i = 0; i < n; ++i)
 if (A[i] == x)
 return true;
 return false;
 }

 int mid1 = A[n/3];
 int mid2 = A[2*n/3];
 if (x == mid1 || x == mid2)
 return true;
 if (x < mid1)
 return search(x, A, n/3);
 if (x > mid2)
 return search(x, A + 2*n/3, n - 2*n/3);
 return search(x, A + n/3, 2*n/3 - n/3);
}

Problem 5. Analyze the running time of ternary search (give the recurrence relation, find a closed form, prove the closed form correct).

Solution 5. A recurrence relation is \(T(n) = T(n/3) + c \), \(T(1) = d \) where \(c, d \in \mathbb{R}^+ \). First, finding a closed form via repeated substitution:

\[
T(n) = T(n/3) + c \\
= (T((n/3)/3) + c) + c \\
= T(n/3^2) + 2c \\
= (T((n/3^2)/3) + c) + 2c \\
= T(n/3^3) + 3c
\]

So we guess that \(T(n) = T(n/3^k) + kc \). Let \(k = \log_3(n) \). Then \(T(n) = T(1) + \log_3(n)c = d + c \log_3(n) \).

Now prove it by induction. Base case: \(T(1) = d = d + 0 = d + c \log_3(1) \).
Inductive step: Assume \(T(n) = d + c \log_3(n) \).
Then

\[T(3n) = T((3n)/3) + c \]
\[= T(n) + c \]
\[= d + c \log_3(n) + c \]
\[= d + c + c \log_3(n) \]
\[= d + c(1 + \log_3(n)) \]
\[= d + c(\log_3(3) + \log_3(n)) \]
\[= d + c(\log_3(3n)) \]

Proved! So \(T(n) = d + c \log_3(n) = \Theta(\log(n)) \) is the running time of ternary search.