Course Information

Course description. A second programming course. Includes problem solving by structured design. Provides an introduction to elementary data structures (arrays, linked lists, trees), abstract data types (stacks, queues, lists, sets), algorithms (sorting, searching), and advanced programming techniques (testing, debugging, recursion).

- Instructor: Andrew Winslow (andrew.winslow@utrgv.edu).
- Teaching assistant: TBD
- Course webpage: http://andrewwinslow.com/2380/.
- Lecture: 10:50-12:05 MW in ENGR 1.290.
- Office hours: 3:00-4:00 MTWR, 11:00-12:00 F in ENGR 3.279.
- Final exam: TBD.
- Anonymous feedback: http://sayat.me/AndrewWinslow.

Prerequisites. Students must have completed CSCI 1370 or CSCI 1378 (Engineering Computer Science I) or CSCI 1380 or CSCI 1387 (Computer Science I).

Textbook. There are two recommended\(^1\) course textbooks:

- Open Data Structures (in C++): An Introduction by Pat Morin.
- C++ Primer (5th Edition) by Stanley B Lippman, Josée Lajoie, and Barbara E. Moo.

Course schedule and topics. Below is a rough schedule of the course and topics covered; the exact schedule will be maintained and updated on the course webpage.

- **Weeks 1-3**: Classes and pointers.
- **Weeks 4-6**: Array-based data structures, strings, file input & output.
- **Weeks 7-9**: Linked-list-based data structures.
- **Weeks 10-12**: Recursion and sorting algorithms.

\(^1\)The course does not use either textbook directly in any way.
• **Week 13-15**: Binary search trees.

Grading. The course grade is determined in three parts:

- **Homework**: weekly programming assignments.
- **Exercises**: twice-weekly 10-minute paper-&-pencil group exercises.
- **Midterm**: an in-class 70-minute paper-&-pencil individual test.
- **Final exam**: an in-class 70-minute paper-&-pencil individual test.

Each part determines a portion of the final grade as follows:

- **Homework**: 56% total (4% each).
- **Exercises**: 4% total (evenly divided across exercises).
- **Midterm**: 20%.
- **Final exam**: 20%.

The course grade is determined by computing the weighted total (out of 100%) of all four parts and applying the following percentage-to-letter-grade function: 90%-100% → A, 80%-89% → B, 70%-79% → C, 60%-69% → D, 0%-59% → F. Grades may be curved to reflect the overall performance of the class.

Bug bounty. Please report errors in homeworks and exams to Andrew verbally or via email. For each such error, the first student to report it receives 0.5% bonus to their course grade. This bonus cannot exceed 3% total, i.e. six reports.

Feedback. Constructive feedback about the course is welcome at any time. Anonymous feedback can be given using sayat.me.

Course Policies

Attendance. Students are expected to attend all scheduled classes and may be dropped from the course for excessive absences. The UTRGV attendance policy excuses students from attending class if they are participating in officially sponsored university activities, such as athletics, for observance of religious holy days, or for military service. Students should contact the instructor in advance of the excused absence and arrange to make up missed work or examinations.

Late work. Late submissions receive 70% credit by completing the following process:

1. Complete the assignment, i.e. prints “Assignment complete.”

2. Submit the assignment via Blackboard.
3. Come to office hours, prepared to speak briefly about your submission.

Dropping classes. According to UTRGV policy, students may drop any class without penalty earning a grade of DR until the official drop date. Following that date, students must be assigned a letter grade and can no longer drop the class. Students considering dropping the class should be aware of the **3-peat rule** and the **6-drop rule** so they can recognize how dropped classes may affect their academic success.

- **6-drop rule:** Texas law that dictates that undergraduate students may not drop more than six courses during their undergraduate career. Courses dropped at other Texas public higher education institutions will count toward the six-course drop limit.
- **3-peat rule:** additional fees are charged to students who take the same class for the third time.

Scholastic integrity. As members of a community dedicated to honesty, integrity, and mutual respect in all interactions and relationships, students, faculty, and administration of our university pledge to abide by the principles in the **Vaquero Honor Code.** For more information, see the **Student Conduct and Discipline Code.**

Course evaluation. Students are required to complete an ONLINE evaluation of this course, accessed through your UTRGV account (http://my.utrgv.edu); you will be contacted through email with further instructions. Students who complete their evaluations will have priority access to their grades. Online evaluations will be available:

- Fall 2017 Module 1 Oct. 5 - Oct. 11
- Fall 2017 Module 2 Dec. 1 - Dec. 7
- Fall 2017 (full semester) Nov. 15 - Dec. 6

Sexual harassment, discrimination, and violence. In accordance with UT System regulations, your instructor is a “Responsible Employee” for reporting purposes under Title IX regulations and so must report any instance, occurring during a student’s time in college, of sexual assault, stalking, dating violence, domestic violence, or sexual harassment about which she/he becomes aware during this course through writing, discussion, or personal disclosure. More information can be found at www.utrgv.edu/equity, including confidential resources available on campus. The faculty and staff of UTRGV actively strive to provide a learning, working, and living environment that promotes personal integrity, civility, and mutual respect in an environment free from sexual misconduct and discrimination.

Students with disabilities. Students with a documented disability (physical, psychological, learning, or other disability which affects academic performance) who would like to receive academic accommodations should contact Student Accessibility Services (SAS) as soon as possible to schedule an appointment to initiate services. Accommodations can be arranged through SAS at any time, but are not retroactive. Students who suffer a broken bone, severe injury or undergo surgery during the semester are eligible for temporary services. **Brownsville Campus:** Student Accessibility Services is located in Cortez Hall Room 129 and can be contacted by phone at (956) 882-7374 (Voice) or via email at ability@utrgv.edu
Student Learning and ABET Outcomes

Student learning outcomes. Upon successful completion of this course, students will be able to:

1. Design, implement, test, and debug simple programs in an object-oriented programming language.
2. Write programs that use each of the following data structures: arrays, strings, linked lists, stacks, queues, and trees.
3. Choose the appropriate data structure for modeling a given problem.
4. Identify the base case and the general case of a recursively defined problem.
5. Implement, test, and debug simple recursive functions and procedures.
7. Demonstrate different traversal methods for trees.
8. Model problems in computer science using trees.

ABET Outcomes for CSCI 2380

1. An ability to apply knowledge of computing and mathematics appropriate to the discipline.
2. An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution.
3. An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
4. An ability to use current techniques, skills, and tools necessary for computing practice.
5. An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.
6. An ability to apply design and development principles in the construction of software systems of varying complexity.

ABET Outcomes for CMPE 2380
1. An ability to apply knowledge of mathematics, science, and engineering.

2. An ability to design and conduct experiments, as well as to analyze and interpret data.

3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

4. An ability to identify, formulate, and solve engineering problems.

5. A recognition of the need for, and an ability to engage in life-long learning.

6. A knowledge of contemporary issues.

7. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.